PI
Core/Dual

Michael Carbin

Assistant Professor

Phone

253-5881

Room

32-G782

Projects

Project

Program Performance Prediction with Deep Learning

Predicting the number of clock cycles a processor takes to execute a block of assembly instructions in steady-state (the throughput) is important for both compiler designers and performance engineers.

However, building an analytical model to do so is especially complicated in modern x86-64 Complex Instruction Set Computer (CISC) machines with sophisticated processor microarchitectures in that it is tedious, error-prone, and must be performed from scratch for each processor generation.

Ithemal is the first tool that learns to predict the throughput of a set of instructions. It does so more accurately than state-of-the-art hand-written tools currently used in compiler backends and static machine code analyzers. In particular, Ithemal has less than half the error of state-of-the-art analytical models (LLVM's llvm-mca and Intel's IACA).

Groups

Community of Research

Vertical AI Community of Research

This CoR takes a unified approach to cover the full range of research areas required for success in artificial intelligence, including hardware, foundations, software systems, and applications.

Community of Research

Applied Machine Learning Community of Research

This CoR brings together researchers at CSAIL working across a broad swath of application domains. Within these lie novel and challenging machine learning problems serving science, social science and computer science.

Community of Research

Systems Community of Research

The Systems CoR is focused on building and investigating large-scale software systems that power modern computers, phones, data centers, and networks, including operating systems, the Internet, wireless networks, databases, and other software infrastructure.

 1 More