Hanshen Xiao

Graduate Student





Privacy-Preserving Decentralized Optimization

To enable privacy preservation in decentralized optimization, differential privacy is the most commonly used approach. However, under such scenario, the trade-off between accuracy (even efficiency) and privacy is inevitable. In this project, distributed numerical optimization scheme incorporated with lightweight cryptographic information sharing are explored. The affect on the convergence rate from network topology is considered.


Distributed Co-prime Sampling Algorithms

To further parallelize co-prime sampling based sparse sensing, we introduce Diophantine Equation in different algebraic structures to build generalized lattice arrays.
With strong relationship to generalized Chinese Remainder Theorem, the geometry properties in the remainder code space, a special lattice space, are explored.