Amoeba is a distributed storage system that efficiently supports ad-hoc and exploratory analytics using adaptive data partitioning

Data partitioning is crucial to improving query performance and several workload-based partitioning techniques have been proposed in database literature. However, many modern analytic applications involve ad-hoc or exploratory analysis where users do not have a representative query workload a priori. Static workload-based data partitioning techniques are therefore not suitable for such settings. To address this problem, we present a distributed storage system called Amoeba. Amoeba uses adaptive multi-attribute data partitioning to improve the data layout based on workload changes. It efficiently support ad-hoc as well as recurring queries. Amoeba requires zero set-up and tuning effort, allowing analysts to get the benefits of partitioning without requiring an upfront query workload. The key idea is to build and maintain a partitioning tree on top of the dataset. The partitioning tree allows us to answer queries with predicates by reading a subset of the data. Amoeba adapts it over time by incrementally modifying subtrees based on user queries using repartitioning. A prototype of Amoeba running on top of Apache Spark improves query performance by up to 7x over full scans and up to 2x over range-based partitioning techniques on TPC-H as well as a real-world workload.

Research Areas


default headshot

Alekh Jindal