Statistical Optimality of Stochastic Gradient Descent on Hard Learning Problems through Multiple Passes

Speaker

Francis Bach
INRIA

Host

Stefanie Jegelka, Suvrit Sra
CSAIL/LIDS
Abstract:
We consider stochastic gradient descent (SGD) for least-squares regression with potentially several passes over the data. While several passes have been widely reported to perform practically better in terms of predictive performance on unseen data, the existing theoretical analysis of SGD suggests that a single pass is statistically optimal. While this is true for low-dimensional easy problems, we show that for hard problems, multiple passes lead to statistically optimal predictions while single pass does not; we also show that in these hard models, the optimal number of passes over the data increases with sample size. In order to define the notion of hardness and show that our predictive performances are optimal, we consider potentially infinite-dimensional models and notions typically associated to kernel methods, namely, the decay of eigenvalues of the covariance matrix of the features and the complexity of the optimal predictor as measured through the covariance matrix. We illustrate our results on synthetic experiments with non-linear kernel methods and on a classical benchmark with a linear model. (Joint work with Loucas Pillaud-Vivien and Alessandro Rudi)

Bio:
Francis Bach is a researcher at Inria, leading since 2011 the machine learning team which is part of the Computer Science Department at Ecole Normale Supérieure. He graduated from Ecole Polytechnique in 1997 and completed his Ph.D. in Computer Science at U.C. Berkeley in 2005, working with Professor Michael Jordan. He spent two years in the Mathematical Morphology group at Ecole des Mines de Paris, then he joined the computer vision project-team at Inria/Ecole Normale Supérieure from 2007 to 2010. Francis Bach is primarily interested in machine learning, and especially in graphical models, sparse methods, kernel-based learning, large-scale convex optimization, computer vision and signal processing. He obtained in 2009 a Starting Grant and in 2016 a Consolidator Grant from the European Research Council, and received the Inria young researcher prize in 2012, the ICML test-of-time award in 2014, as well as the Lagrange prize in continuous optimization in 2018. In 2015, he was program co-chair of the International Conference in Machine learning (ICML), and general chair in 2018; he is now co-editor-in-chief of the Journal of Machine Learning Research.