Robotic Manipulation Without Geometric Models
Speaker
Robert Platt
Northeastern University
Abstract:
Most approaches to planning for robotic manipulation take a geometric description of the world and the objects in it as input. Unfortunately, despite successes in SLAM, estimating the geometry of the world from sensor data can be challenging. This is particularly true in open world scenarios where we have little prior information about the geometry or appearance of the objects to be handled. This is a problem because even small modelling errors can cause a grasp or manipulation operation to fail. In this talk, I will describe some recent work on approaches to robotic manipulation that eschew geometric models. Our recent results show that these methods excel on manipulation tasks involving novel objects presented in dense clutter.
Bio:
Dr. Robert Platt is an Assistant Professor of Computer Science at Northeastern University. Prior to coming to Northeastern, he was a Research Scientist at MIT and a technical lead at NASA Johnson Space Center, where he helped develop the control and autonomy subsystems for Robonaut 2, the first humanoid robot in space.
Most approaches to planning for robotic manipulation take a geometric description of the world and the objects in it as input. Unfortunately, despite successes in SLAM, estimating the geometry of the world from sensor data can be challenging. This is particularly true in open world scenarios where we have little prior information about the geometry or appearance of the objects to be handled. This is a problem because even small modelling errors can cause a grasp or manipulation operation to fail. In this talk, I will describe some recent work on approaches to robotic manipulation that eschew geometric models. Our recent results show that these methods excel on manipulation tasks involving novel objects presented in dense clutter.
Bio:
Dr. Robert Platt is an Assistant Professor of Computer Science at Northeastern University. Prior to coming to Northeastern, he was a Research Scientist at MIT and a technical lead at NASA Johnson Space Center, where he helped develop the control and autonomy subsystems for Robonaut 2, the first humanoid robot in space.