Daniel Vlasic

Semantic Deformation Transfer
Transferring existing mesh deformation from one character to another is a simple way to accelerate the laborious process of mesh animation. In many cases, it is useful to preserve the semantic characteristics of the motion instead of its literal deformation. For example, when applying the walking motion of a human to a flamingo, the knees should bend in the opposite direction. Semantic deformation transfer accomplishes this task with a shape space that enables interpolation and projection with standard linear algebra. Given several example mesh pairs, semantic deformation transfer infers a correspondence between the shape spaces of the two characters. This enables automatic transfer of new poses and animations.

Articulated Mesh Animation from Multi-view Silhouettes
Details in mesh animations are difficult to generate but they have great impact on visual quality. In this work, we demonstrate a practical software system for capturing such details from multi-view video recordings. Given a stream of synchronized video images that record a human performance from multiple viewpoints and an articulated template of the performer, our system captures the motion of both the skeleton and the shape. The output mesh animation is enhanced with the details observed in the image silhouettes. For example, a performance in casual loose-fitting clothes will generate mesh animations with flowing garment motions. We accomplish this with a fast pose tracking method followed by nonrigid deformation of the template to fit the silhouettes.

Practical Motion Capture in Everyday Surroundings
Commercial motion-capture systems produce excellent in-studio reconstructions, but offer no comparable solution for acquisition in everyday environments. We present a system for acquiring motions almost anywhere. This wearable system gathers ultrasonic time-of-flight and inertial measurements with a set of inexpensive miniature sensors worn on the garment. After recording, the information is combined using an Extended Kalman Filter to reconstruct joint configurations of a body. Experimental results show that even motions that are traditionally difficult to acquire are recorded with ease within their natural settings.

Face Transfer with Multilinear Models
Face Transfer is a method for mapping videorecorded performances of one individual to facial animations of another. It extracts visemes (speech-related mouth articulations), expressions, and three-dimensional (3D) pose from monocular video or film footage. These parameters are then used to generate and drive a detailed 3D textured face mesh for a target identity, which can be seamlessly rendered back into target footage. The underlying face model automatically adjusts for how the target performs facial expressions and visemes. The performance data can be easily edited to change the visemes, expressions, pose, or even the identity of the target—the attributes are separably controllable.

Opacity Light Fields
We present new hardware-accelerated techniques for rendering surface light fields with opacity hulls that allow for interactive visualization of objects that have complex reflectance properties and elaborate geometrical details. The opacity hull is a shape enclosing the object with view-dependent opacity parameterized onto that shape. We call the combination of opacity hulls and surface light fields the opacity light field. Opacity light fields are ideally suited for rendering of the visually complex objects and scenes obtained with 3D photography. We show how to implement opacity light fields in the framework of three surface light field rendering methods: viewdependent texture mapping, unstructured lumigraph rendering, and light field mapping.