This community is interested in understanding and affecting the interaction between computing systems and society through engineering, computer science and public policy research, education, and public engagement.
Our mission is to work with policy makers and cybersecurity technologists to increase the trustworthiness and effectiveness of interconnected digital systems.
The Systems CoR is focused on building and investigating large-scale software systems that power modern computers, phones, data centers, and networks, including operating systems, the Internet, wireless networks, databases, and other software infrastructure.
This CoR takes a unified approach to cover the full range of research areas required for success in artificial intelligence, including hardware, foundations, software systems, and applications.
Alloy is a language for describing structures and a tool for exploring them. It has been used in a wide range of applications from finding holes in security mechanisms to designing telephone switching networks. Hundreds of projects have used Alloy for design analysis, for verification, for simulation, and as a backend for many other kinds of analysis and synthesis tools, and Alloy is currently being taught in courses worldwide.
Self-driving cars are likely to be safer, on average, than human-driven cars. But they may fail in new and catastrophic ways that a human driver could prevent. This project is designing a new architecture for a highly dependable self-driving car.
The creation of low-power circuits capable of speech recognition and speaker verification will enable spoken interaction on a wide variety of devices in the era of Internet of Things.
The butt of jokes as little as 10 years ago, automatic speech recognition is now on the verge of becoming people’s chief means of interacting with their principal computing devices. In anticipation of the age of voice-controlled electronics, MIT researchers have built a low-power chip specialized for automatic speech recognition. Whereas a cellphone running speech-recognition software might require about 1 watt of power, the new chip requires between 0.2 and 10 milliwatts, depending on the number of words it has to recognize.