The focus of the HCI CoR is inventing new systems and technology that lie at the interface between people and computation, and understanding their design, implementation, and societal impact.
Knitting is the new 3d printing. It has become popular again with the widespread availability of patterns and templates, together with the maker movements. Lower-cost industrial knitting machines are starting to emerge, but we are still missing the corresponding design tools. Our goal is to fill this gap.
Our goal is to develop collaborative agents (software or robots) that can efficiently communicate with their human teammates. Key threads involve designing algorithms for inferring human behavior and for decision-making under uncertainty.
Almost every object we use is developed with computer-aided design (CAD). While CAD programs are good for creating designs, using them to actually improve existing designs can be difficult and time-consuming.
Uhura is an autonomous system that collaborates with humans in planning and executing complex tasks, especially under over-subscribed and risky situations.
Last week MIT’s Institute for Foundations of Data Science (MIFODS) held an interdisciplinary workshop aimed at tackling the underlying theory behind deep learning. Led by MIT professor Aleksander Madry, the event focused on a number of research discussions at the intersection of math, statistics, and theoretical computer science.
Most robots are programmed using one of two methods: learning from demonstration, in which they watch a task being done and then replicate it, or via motion-planning techniques such as optimization or sampling, which require a programmer to explicitly specify a task’s goals and constraints.
The butt of jokes as little as 10 years ago, automatic speech recognition is now on the verge of becoming people’s chief means of interacting with their principal computing devices. In anticipation of the age of voice-controlled electronics, MIT researchers have built a low-power chip specialized for automatic speech recognition. Whereas a cellphone running speech-recognition software might require about 1 watt of power, the new chip requires between 0.2 and 10 milliwatts, depending on the number of words it has to recognize.