# Research

- Research Areas
- Impact Areas

1 Group Results matching all criteria

1 Project Results matching all criteria

#### Project

## Starling: Query Optimization for Cloud Services

Starling is a scalable query execution engine built on cloud function services that computes at a fine granularity, helping people more easily match workload demand.

2 News Results matching all criteria

## CSAIL hosts first-ever TEDxMIT

Speakers — all women — discuss everything from gravitational waves to robot nurses

## MIT hosts workshop on theoretical foundations of deep learning

Last week MIT’s Institute for Foundations of Data Science (MIFODS) held an interdisciplinary workshop aimed at tackling the underlying theory behind deep learning. Led by MIT professor Aleksander Madry, the event focused on a number of research discussions at the intersection of math, statistics, and theoretical computer science.

23 Group Results

#### Research Group

## Algorithms Group

We devise new mathematical tools to tackle the increasing difficulty and importance of problems we pose to computers.

#### Research Group

## Applied Computing Group

We design software for high performance computing, develop algorithms for numerical linear algebra, and research random matrix theory and its applications.

#### Research Center

## Center for Deployable Machine Learning (CDML)

The MIT Center for Deployable Machine Learning (CDML) works towards creating AI systems that are robust, reliable and safe for real-world deployment.

#### Research Group

## Commit Group

We focus on finding novel approaches to improve the performance of modern computer systems without unduly increasing the complexity faced by application developers, compiler writers, or computer architects.

#### Research Group

## Complexity Theory Group

Our interests span quantum complexity theory, barriers to solving P versus NP, theoretical computer science with a focus on probabilistically checkable proofs (PCP), pseudo-randomness, coding theory, and algorithms.

#### Research Group

## Computation and Biology

Our lab focuses on designing algorithms to gain biological insights from advances in automated data collection and the subsequent large data sets drawn from them.

#### Research Group

## Computation Structures Group

Our mission is fostering the creation and development of high-performance, reliable and secure computing systems that are easy to interact with.

#### Research Group

## Computational Connectomics Group

Our group’s goal is to create, based on such microscopic connectivity and functional data, new mathematical models explaining how neural tissue computes.

#### Community of Research

## Computing & Society Community of Research

This community is interested in understanding and affecting the interaction between computing systems and society through engineering, computer science and public policy research, education, and public engagement.

#### Research Group

## Cryptography and Information Security Group

We seek to develop techniques for securing tomorrow's global information infrastructure by exploring theoretical foundations, near-term practical applications, and long-range speculative research.

#### Research Group

## Decentralized Information Group

We are investigating decentralized technologies that affect social change.

#### Research Group

## Geometric Data Processing Group

Our group studies geometric problems in computer graphics, computer vision, machine learning, optimization, and other disciplines.

#### Research Group

## Haystack Group

We are an interdisciplinary group of researchers blending approaches from human-computer interaction, social computing, databases, information management, and databases.

#### Research Group

## Multicore Algorithmics

We develop techniques for designing, implementing, and reasoning about multiprocessor algorithms, in particular concurrent data structures for multicore machines and the mathematical foundations of the computation models that govern their behavior.

#### Research Group

## Multimodal Understanding Group

Our objective is to build techniques, software, and hardware that enable natural interaction with

computation.

computation.

#### Research Group

## Quantum Information Science Group

Our research interests center around the capabilities and limits of quantum computers, and computational complexity theory more generally.

#### Research Group

## Supertech Research Group

#### Community of Research

## Systems Community of Research

The Systems CoR is focused on building and investigating large-scale software systems that power modern computers, phones, data centers, and networks, including operating systems, the Internet, wireless networks, databases, and other software infrastructure.

#### Community of Research

## Theory of Computation Community of Research

The goal of the Theory of Computation CoR is to study the fundamental strengths and limits of computation as well as how these interact with mathematics, computer science, and other disciplines.

#### Research Group

## Theory of Distributed Systems Group

We work on a wide range of problems in distributed computing theory. We study algorithms and lower bounds for typical problems that arise in distributed systems---like resource allocation, implementing shared memory abstractions, and reliable communication.

#### Community of Research

## Vertical AI Community of Research

This CoR takes a unified approach to cover the full range of research areas required for success in artificial intelligence, including hardware, foundations, software systems, and applications.

78 Project Results

#### Project

## [Inactive] T-1000: A Thousand-Core Coherent Shared Memory System

(This project is no longer active.) The T-1000, a prototype system of a thousand realistic processors embedded throughout an ensemble of interconnected FPGAs, seeks to demonstrate the scalability of timestamp-based cache coherence protocols on distributed shared memory systems.

#### Project

## A new way of handling all-to-all broadcast

We design a new all-to-all broadcasts scheme with significantly less communication cost using aggregate signatures.

#### Project

## A Simplified and Extensible Cilk Runtime for Research

CilkS is a new runtime system for the Cilk multithreaded programming environment which makes it easy to experiment with new algorithms, data structures, and programming linguistics.

#### Project

## Active Learning of Models for Planning

We aim to develop a systematic framework for robots to build models of the world and to use these to make effective and safe choices of actions to take in complex scenarios.

#### Project

## Algebraic Techniques for Algorithm Design

We work on improving the algorithms for algebraic problems like matrix multiplication, and using these to design algorithms for fundamental non-algebraic problems.

#### Project

## Algorithmic Aspects of Performance Engineering

The project concerns algorithmic solutions for writing fast codes.

#### Project

## An Algorithmic Theory of Brain Networks

We are developing an algorithmic theory for brain networks, based on simple synchronized stochastic graph-based neural network models.

#### Project

## Approximating the diameter of a directed graph

There is a family of approximation algorithms for computing the diameter of an undirected graph that give a time/accuracy trade-off and our goal is to extend these results to directed graphs.

#### Project

## Artificial Social Intelligence for Successful Teams (ASIST)

Our goal is to develop a socially intelligent team coacher agent that helps humans communicate, strategize, and work together efficiently.

#### Project

## Aspect-Augmented Adversarial Networks for Domain Adaptation

We propose a novel aspect-augmented adversarial network for cross-aspect and cross-domain adaptation tasks. The effectiveness of our approach suggests the potential application of adversarial networks to a broader range of NLP tasks for improved representation learning, such as machine translation and language generation.

#### Project

## Basing Cryptography on Structured Hardness

We aim to base a variety of cryptographic primitives on complexity theoretic assumptions. We focus on the assumption that there exist highly structured problems --- admitting so called "zero-knowledge" protocols --- that are nevertheless hard to compute

#### Project

## Bayesian Optimization for Global Optimization of Expensive Black-box Functions

We study the fundamentals of Bayesian optimization and develop efficient Bayesian optimization methods for global optimization of expensive black-box functions originated from a range of different applications.

#### Project

## Better Models for Ride-Sharing

Traffic is not just a nuisance for drivers: It’s also a public health hazard and bad news for the economy.

#### Project

## BlueDBM: Distributed Flash Storage for Big Data Analytics

BlueDBM is an architecture of computer clusters consisting of fast distributed flash storage and in-storage accelerators, which often outperforms larger and more expensive clusters in applications such as graph analytics.

#### Project

## Bridging Theory and Practice in Shared-Memory Parallel Algorithm Design

This project aims to design parallel algorithms for shared-memory machines that are efficient both in theory and also in practice.

#### Project

## Coresets for Machine Learning Algorithms

Our goal is to design novel data compression techniques to accelerate popular machine learning algorithms in Big Data and streaming settings.

#### Project

## Data Garbling: Computing on Encrypted Data

We are investigating the limits of computing on encrypted data, with a focus on the private outsourcing of computation over sensitive data.

#### Project

## Deep Inverse Planning

Deep inverse planning for learning from high-dimensional demonstrations

#### Project

## Determining Wikipedia's Influence on Science

Wikipedia is one of the most widely accessed encyclopedia sites in the world, including by scientists. Our project aims to investigate just how far Wikipedia’s influence goes in shaping science.

#### Project

## Deterministic Algorithms for Robotic Task and Motion Planning

Our goal is to investigate deterministic algorithms for robotic task and motion planning.

#### Project

## Distributed Algorithms for Dynamic and Noisy Platforms

Distributed systems are now everywhere, for example, in wireless communication networks, distributed data-management systems, coordinated robots, transportation systems, and modern multiprocessors.

#### Project

## Distributed Co-prime Sampling Algorithms

To further parallelize co-prime sampling based sparse sensing, we introduce Diophantine Equation in different algebraic structures to build generalized lattice arrays.

With strong relationship to generalized Chinese Remainder Theorem, the geometry properties in the remainder code space, a special lattice space, are explored.

With strong relationship to generalized Chinese Remainder Theorem, the geometry properties in the remainder code space, a special lattice space, are explored.

#### Project

## Distributed Computation in Ant Colonies

We are interested in applying insights from distributed computing theory to understand how ants and other social insects work together to perform complex tasks such as foraging for food, allocating tasks to workers, and choosing high quality nest sites.

#### Project

## Distributed Robot Garden

The robot garden provides an aesthetically pleasing educational platform that can visualize computer science concepts and encourage young students to pursue programming and robotics.

53 People Results

## Leandro Agudelo

Research Scientist

## Cenk Baykal

Graduate Student

## Martin Demaine

Robotics Engineer

## Noah Golowich

Graduate Student

## Joanne Hanley

Administrative Assistant II

## Jamey Hicks

Research Affiliate

## Dhiraj Holden

Graduate Student

## Siddhartha Jayanti

Graduate Student

## William Kuszmaul

Graduate Student

## Ilia Lebedev

Graduate Student

## Lucas Liebenwein

Graduate Student

82 News Results

## Monitoring sleep positions for a healthy rest

Wireless device captures sleep data without using cameras or body sensors; could aid patients with Parkinson’s disease, epilepsy, or bedsores.

## Toward a machine learning model that can reason about everyday actions

Researchers train a model to reach human-level performance at recognizing abstract concepts in video.

## Shrinking deep learning’s carbon footprint

Through innovation in software and hardware, researchers move to reduce the financial and environmental costs of modern artificial intelligence.

## Looking into the black box

Recent advances give theoretical insight into why deep learning networks are successful.

## Algorithm finds hidden connections between paintings at the Met

A team from MIT helped create an image retrieval system to find the closest matches of paintings from different artists and cultures.

## New glove lets you incorporate real-life objects into virtual worlds

New glove lets you incorporate real-life objects into virtual worlds

## Giving soft robots senses

In a pair of papers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL), two teams enable better sense and perception for soft robotic grippers.

## Visualizing the world beyond the frame

Researchers test how far artificial intelligence models can go in dreaming up varied poses and colors of objects and animals in photos.

## Automating the search for entirely new “curiosity” algorithms

Researchers show that computers can “write” algorithms that adapt to radically different environments better than algorithms designed by humans.

## CSAIL device lets doctors monitor COVID-19 patients from a distance

Wireless system helps Boston retirement home care for COVID patients while reducing risk of contagion

## System trains driverless cars in simulation before they hit the road

Using a photorealistic simulation engine, vehicles learn to drive in the real world and recover from near-crash scenarios.

## “Doing machine learning the right way”

Professor Aleksander Madry strives to build machine-learning models that are more reliable, understandable, and robust.

## Showing robots how to do your chores

By observing humans, robots learn to perform complex tasks, such as setting a table.

## Protecting sensitive metadata so it can’t be used for surveillance

System ensures hackers eavesdropping on large networks can’t find out who’s communicating and when they’re doing so.

## Automated system can rewrite outdated sentences in Wikipedia articles

Text-generating tool pinpoints and replaces specific information in sentences while retaining humanlike grammar and style.

## “Sensorized” skin helps soft robots find their bearings

Flexible sensors and an artificial intelligence model tell deformable robots how their bodies are positioned in a 3D environment.

## Hey Alexa: Sorry I fooled you

MIT’s new system TextFooler can trick the types of natural-language-processing systems that Google uses to help power its search results, including audio for Google Home

## Giving cryptocurrency users more bang for their buck

Routing scheme boosts efficiency in networks that help speed up blockchain transactions.

## How well can computers connect symptoms to diseases?

A new MIT study finds “health knowledge graphs,” which show relationships between symptoms and diseases and are intended to help with clinical diagnosis, can fall short for certain conditions and patient populations. The results also suggest ways to boost their performance.

## Finding the true potential of algorithms

Using mathematical theory, Virginia Williams coaxes algorithms to run faster or proves they’ve hit their maximum speed.

## Autonomous system improves environmental sampling at sea

Robotic boats could more rapidly locate the most valuable sampling spots in uncharted waters.

## Pushy robots learn the fundamentals of object manipulation

Systems “learn” from novel dataset that captures how pushed objects move, to improve their physical interactions with new objects.

## Deep learning with point clouds

Research aims to make it easier for self-driving cars, robotics, and other applications to understand the 3D world.

## Recovering “lost dimensions” of images and video

Model could recreate video from motion-blurred images and “corner cameras,” may someday retrieve 3D data from 2D medical images.