Our vision is data-driven machine learning systems that advance the quality of healthcare, the understanding of cyber arms races and the delivery of online education.
This CoR aims to develop AI technology that synthesizes symbolic reasoning, probabilistic reasoning for dealing with uncertainty in the world, and statistical methods for extracting and exploiting regularities in the world, into an integrated picture of intelligence that is informed by computational insights and by cognitive science.
We are an interdisciplinary group of researchers blending approaches from human-computer interaction, social computing, databases, information management, and databases.
We develop techniques for designing, implementing, and reasoning about multiprocessor algorithms, in particular concurrent data structures for multicore machines and the mathematical foundations of the computation models that govern their behavior.
We work on a wide range of problems in distributed computing theory. We study algorithms and lower bounds for typical problems that arise in distributed systems---like resource allocation, implementing shared memory abstractions, and reliable communication.
We aim to develop a systematic framework for robots to build models of the world and to use these to make effective and safe choices of actions to take in complex scenarios.
Alloy is a language for describing structures and a tool for exploring them. It has been used in a wide range of applications from finding holes in security mechanisms to designing telephone switching networks. Hundreds of projects have used Alloy for design analysis, for verification, for simulation, and as a backend for many other kinds of analysis and synthesis tools, and Alloy is currently being taught in courses worldwide.
We study the fundamentals of Bayesian optimization and develop efficient Bayesian optimization methods for global optimization of expensive black-box functions originated from a range of different applications.
Wikipedia is one of the most widely accessed encyclopedia sites in the world, including by scientists. Our project aims to investigate just how far Wikipedia’s influence goes in shaping science.
The robot garden provides an aesthetically pleasing educational platform that can visualize computer science concepts and encourage young students to pursue programming and robotics.
We are developing a general framework that enforces privacy transparently enabling different kinds of machine learning to be developed that are automatically privacy preserving.
The Robot Compiler allows non-engineering users to rapidly fabricate customized robots, facilitating the proliferation of robots in everyday life. It thereby marks an important step towards the realization of personal robots that have captured imaginations for decades.
This week it was announced that MIT professors and CSAIL principal investigators Shafi Goldwasser, Silvio Micali, Ronald Rivest, and former MIT professor Adi Shamir won this year’s BBVA Foundation Frontiers of Knowledge Awards in the Information and Communication Technologies category for their work in cryptography.
When a power company wants to build a new wind farm, it generally hires a consultant to make wind speed measurements at the proposed site for eight to 12 months. Those measurements are correlated with historical data and used to assess the site’s power-generation capacity.This month CSAIL researchers will present a new statistical technique that yields better wind-speed predictions than existing techniques do — even when it uses only three months’ worth of data. That could save power companies time and money, particularly in the evaluation of sites for offshore wind farms, where maintaining measurement stations is particularly costly.