#### Research Group

## Algorithms Group

We devise new mathematical tools to tackle the increasing difficulty and importance of problems we pose to computers.

- Research Areas
- Impact Areas

12 Group Results

We devise new mathematical tools to tackle the increasing difficulty and importance of problems we pose to computers.

We design software for high performance computing, develop algorithms for numerical linear algebra, and research random matrix theory and its applications.

We focus on finding novel approaches to improve the performance of modern computer systems without unduly increasing the complexity faced by application developers, compiler writers, or computer architects.

Our mission is fostering the creation and development of high-performance, reliable and secure computing systems that are easy to interact with.

This community is interested in understanding and affecting the interaction between computing systems and society through engineering, computer science and public policy research, education, and public engagement.

We seek to develop techniques for securing tomorrow's global information infrastructure by exploring theoretical foundations, near-term practical applications, and long-range speculative research.

We are investigating decentralized technologies that affect social change.

Our group studies geometric problems in computer graphics, computer vision, machine learning, optimization, and other disciplines.

We are an interdisciplinary group of researchers blending approaches from human-computer interaction, social computing, databases, information management, and databases.

The Systems CoR is focused on building and investigating large-scale software systems that power modern computers, phones, data centers, and networks, including operating systems, the Internet, wireless networks, databases, and other software infrastructure.

We work on a wide range of problems in distributed computing theory. We study algorithms and lower bounds for typical problems that arise in distributed systems---like resource allocation, implementing shared memory abstractions, and reliable communication.

This CoR takes a unified approach to cover the full range of research areas required for success in artificial intelligence, including hardware, foundations, software systems, and applications.

11 Project Results

The project concerns algorithmic solutions for writing fast codes.

Our goal is to develop a socially intelligent team coacher agent that helps humans communicate, strategize, and work together efficiently.

Our goal is to investigate deterministic algorithms for robotic task and motion planning.

To further parallelize co-prime sampling based sparse sensing, we introduce Diophantine Equation in different algebraic structures to build generalized lattice arrays.

With strong relationship to generalized Chinese Remainder Theorem, the geometry properties in the remainder code space, a special lattice space, are explored.

With strong relationship to generalized Chinese Remainder Theorem, the geometry properties in the remainder code space, a special lattice space, are explored.

Help robots learn faster by providing demonstrations when they need help

The creation of low-power circuits capable of speech recognition and speaker verification will enable spoken interaction on a wide variety of devices in the era of Internet of Things.

To enable privacy preservation in decentralized optimization, differential privacy is the most commonly used approach. However, under such scenario, the trade-off between accuracy (even efficiency) and privacy is inevitable. In this project, distributed numerical optimization scheme incorporated with lightweight cryptographic information sharing are explored. The affect on the convergence rate from network topology is considered.

The Robot Compiler allows non-engineering users to rapidly fabricate customized robots, facilitating the proliferation of robots in everyday life. It thereby marks an important step towards the realization of personal robots that have captured imaginations for decades.

Starling is a scalable query execution engine built on cloud function services that computes at a fine granularity, helping people more easily match workload demand.

A polyhedral compiler for expressing image processing, DNN, and linear/tensor algebra applications

Uhura is an autonomous system that collaborates with humans in planning and executing complex tasks, especially under over-subscribed and risky situations.

13 People Results

Research Affiliate

Graduate Student

Graduate Student

Graduate Student

Postdoctoral Fellow

15 News Results

In a pair of papers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL), two teams enable better sense and perception for soft robotic grippers.

Wireless system helps Boston retirement home care for COVID patients while reducing risk of contagion

When designing actuators involves too many variables for humans to test by hand, this system can step in.

Speakers — all women — discuss everything from gravitational waves to robot nurses

Workshop explores technical directions for making AI safe, fair, and understandable

Last week MIT’s Institute for Foundations of Data Science (MIFODS) held an interdisciplinary workshop aimed at tackling the underlying theory behind deep learning. Led by MIT professor Aleksander Madry, the event focused on a number of research discussions at the intersection of math, statistics, and theoretical computer science.

CSAIL’s approach uses algorithms and “2.5-D” sketches to let computers visualize images from any perspective

Breakthrough CSAIL system suggests robots could one day be able to see well enough to be useful in people’s homes and offices.

Users can quickly visualize designs that optimize multiple parameters at once.

MIT professor discusses using paper-folding for applications in manufacturing, medicine, and robotics

May 2, 2018 - Sir Tim Berners-Lee of MIT gave a Dertouzos Distinguished Lecture titled "From Utopia to Dystopia in 29 Short Years."

CSAIL's NanoMap system enables drones to avoid obstacles while flying at 20 miles per hour, by more deeply integrating sensing and control.

This week it was announced that MIT professors and CSAIL principal investigators Shafi Goldwasser, Silvio Micali, Ronald Rivest, and former MIT professor Adi Shamir won this year’s BBVA Foundation Frontiers of Knowledge Awards in the Information and Communication Technologies category for their work in cryptography.

Today four MIT faculty were named among the Association for Computer Machinery's 2017 Fellows for making “landmark contributions to computing.”