# Research

- Research Areas
- Impact Areas

2 Group Results matching all criteria

#### Community of Research

## Vertical AI Community of Research

This CoR takes a unified approach to cover the full range of research areas required for success in artificial intelligence, including hardware, foundations, software systems, and applications.

28 Group Results

#### Research Group

## Advanced Network Architecture Group

The challenge that motivates the ANA group is to foster a healthy future for the Internet. The interplay of private sector investment, public sector regulation and public interest advocacy, as well as the global diversity in drivers and aspirations, makes for an uncertain future.

#### Research Group

## Algorithms Group

We devise new mathematical tools to tackle the increasing difficulty and importance of problems we pose to computers.

#### Research Group

## Applied Computing Group

We design software for high performance computing, develop algorithms for numerical linear algebra, and research random matrix theory and its applications.

#### Research Center

## Center for Deployable Machine Learning (CDML)

The MIT Center for Deployable Machine Learning (CDML) works towards creating AI systems that are robust, reliable and safe for real-world deployment.

#### Community of Research

## Cognitive AI Community of Research

This CoR aims to develop AI technology that synthesizes symbolic reasoning, probabilistic reasoning for dealing with uncertainty in the world, and statistical methods for extracting and exploiting regularities in the world, into an integrated picture of intelligence that is informed by computational insights and by cognitive science.

#### Research Group

## Complexity Theory Group

Our interests span quantum complexity theory, barriers to solving P versus NP, theoretical computer science with a focus on probabilistically checkable proofs (PCP), pseudo-randomness, coding theory, and algorithms.

#### Research Group

## Computation and Biology

Our lab focuses on designing algorithms to gain biological insights from advances in automated data collection and the subsequent large data sets drawn from them.

#### Research Group

## Computation Structures Group

Our mission is fostering the creation and development of high-performance, reliable and secure computing systems that are easy to interact with.

#### Research Group

## Computational Connectomics Group

Our group’s goal is to create, based on such microscopic connectivity and functional data, new mathematical models explaining how neural tissue computes.

#### Community of Research

## Computing & Society Community of Research

#### Research Group

## Cryptography and Information Security Group

We seek to develop techniques for securing tomorrow's global information infrastructure by exploring theoretical foundations, near-term practical applications, and long-range speculative research.

#### Research Group

## Data Systems Group

We conduct research on all areas of database systems and information management.

#### Research Group

## Decentralized Information Group

We are investigating decentralized technologies that affect social change.

#### Research Group

## Geometric Data Processing Group

Our group studies geometric problems in computer graphics, computer vision, machine learning, optimization, and other disciplines.

#### Research Group

## Haystack Group

We are an interdisciplinary group of researchers blending approaches from human-computer interaction, social computing, databases, information management, and databases.

#### Research Group

## Multicore Algorithmics

We develop techniques for designing, implementing, and reasoning about multiprocessor algorithms, in particular concurrent data structures for multicore machines and the mathematical foundations of the computation models that govern their behavior.

#### Research Group

## Networks at MIT

We build new protocols and architectures to improve the robustness and performance of computer networks. We develop practical solutions in wireless networks, network security, traffic engineering, congestion control, and routing.

#### Research Group

## Networks and Mobile Systems

We conduct research in many areas of networking: wireless networks, Internet architecture and protocols, overlay and peer-to-peer networks, sensor networks, network security, and networked systems.

#### Research Group

## Parallel and Distributed Operating Systems

We at PDOS build and investigate software systems for parallel and distributed environments.

#### Research Group

## Quantum Information Science Group

Our research interests center around the capabilities and limits of quantum computers, and computational complexity theory more generally.

#### Research Group

## Supertech Research Group

We investigate the technologies that support scalable high-performance computing, including hardware, software, and theory.

#### Community of Research

## Systems Community of Research

The Systems CoR is focused on building and investigating large-scale software systems that power modern computers, phones, data centers, and networks, including operating systems, the Internet, wireless networks, databases, and other software infrastructure.

34 Project Results

#### Project

## Active Learning of Models for Planning

We aim to develop a systematic framework for robots to build models of the world and to use these to make effective and safe choices of actions to take in complex scenarios.

#### Project

## AdaptDB: Adaptive Partitioning for Distributed Joins

Our goal is to develop an adaptive storage manager for analytical database workloads in a distributed setting. It works by partitioning datasets across a cluster and incrementally refining data partitioning as queries are run.

#### Project

## Algorithmic Aspects of Performance Engineering

The project concerns algorithmic solutions for writing fast codes.

#### Project

## Aurum: Large Scale Data Discovery

Aurum is a data discovery system that works at large scale, helping people find relevant data.

#### Project

## Bayesian Optimization for Global Optimization of Expensive Black-box Functions

We study the fundamentals of Bayesian optimization and develop efficient Bayesian optimization methods for global optimization of expensive black-box functions originated from a range of different applications.

#### Project

## Better Models for Ride-Sharing

Traffic is not just a nuisance for drivers: It’s also a public health hazard and bad news for the economy.

#### Project

## BlueDBM: Distributed Flash Storage for Big Data Analytics

BlueDBM is an architecture of computer clusters consisting of fast distributed flash storage and in-storage accelerators, which often outperforms larger and more expensive clusters in applications such as graph analytics.

#### Project

## Bridging Theory and Practice in Shared-Memory Parallel Algorithm Design

This project aims to design parallel algorithms for shared-memory machines that are efficient both in theory and also in practice.

#### Project

## Compression and Reordering for Parallel Graph Analytics

We plan to develop a suite of graph compression and reordering techniques as part of the Ligra parallel graph processing framework to reduce space usage and improve performance of graph algorithms.

#### Project

## Coresets for Machine Learning Algorithms

Our goal is to design novel data compression techniques to accelerate popular machine learning algorithms in Big Data and streaming settings.

#### Project

## Data Civilizer

Data scientists universally report that they spend at least 80% of their time finding data sets of interest, accessing them, cleaning them and assembling them into a unified whole.

#### Project

## Data Garbling: Computing on Encrypted Data

We are investigating the limits of computing on encrypted data, with a focus on the private outsourcing of computation over sensitive data.

#### Project

## Data Warehouse Construction

Historically, DBMSs in the warehouse space partitioned their data across a shared nothing

cluster.

cluster.

#### Project

## Database Design

The conventional wisdom described in all text books for performing database design is never followed in practice.

#### Project

## Denial of Service Mitigation through Protocol Design

We aim to better understand the features of network protocols that facilitate denial of service attacks, in order to design more robust protocols and architectures in the future and evaluate existing designs more accurately.

#### Project

## Determining Wikipedia's Influence on Science

Wikipedia is one of the most widely accessed encyclopedia sites in the world, including by scientists. Our project aims to investigate just how far Wikipedia’s influence goes in shaping science.

#### Project

## Distributed Co-prime Sampling Algorithms

To further parallelize co-prime sampling based sparse sensing, we introduce Diophantine Equation in different algebraic structures to build generalized lattice arrays.

With strong relationship to generalized Chinese Remainder Theorem, the geometry properties in the remainder code space, a special lattice space, are explored.

With strong relationship to generalized Chinese Remainder Theorem, the geometry properties in the remainder code space, a special lattice space, are explored.

#### Project

## Diversity-inducing Probability Measures

We aim to understand theory and applications of diversity-inducing probabilities (and, more generally, "negative dependence") in machine learning, and develop fast algorithms based on their mathematical properties.

## Suvrit Sra

#### Project

## Geometry and topology for scientific computing and shape analysis

Developing state-of-the-art tools that process 3D surfaces and volumes

#### Project

## High-Performance Parallel Clustering

We are designing new parallel algorithms, optimizations, and frameworks for clustering large-scale graph and geometric data.

#### Project

## Noria: a new data-flow system for web applications

We're developing a flexible, high-performance storage architecture for database-backed applications, based on a dynamic set of queries specified by the developer which Soup automatically optimizes.

#### Project

## Optimal transport for statistics and machine learning

Linking probability with geometry to improve the theory and practice of machine learning

#### Project

## Political Geometry: Establishing Fair Mathematical Standards for Political Redistricting

Gerrymandering is a direct threat to our democracy, undermining founding principles like equal protection under the law and eroding public confidence in elections.

#### Project

## Privacy-Preserving Decentralized Optimization

To enable privacy preservation in decentralized optimization, differential privacy is the most commonly used approach. However, under such scenario, the trade-off between accuracy (even efficiency) and privacy is inevitable. In this project, distributed numerical optimization scheme incorporated with lightweight cryptographic information sharing are explored. The affect on the convergence rate from network topology is considered.

42 People Results

## Cenk Baykal

Graduate Student

## Jonathan Behrens

Graduate Student

## Tej Chajed

Graduate Student

## Gregory Falco

Postdoctoral Associate

## Siddhartha Jayanti

Graduate Student

## Kenji Kawaguchi

Graduate Student

## Fredrik Berg Kjolstad

Graduate Student

## David Lazar

Graduate Student

## Lucas Liebenwein

Graduate Student

## Slobodan Mitrovic

Postdoctoral Associate

24 News Results

## CSAIL device lets doctors monitor COVID-19 patients from a distance

Wireless system helps Boston retirement home care for COVID patients while reducing risk of contagion

## Protecting sensitive metadata so it can’t be used for surveillance

System ensures hackers eavesdropping on large networks can’t find out who’s communicating and when they’re doing so.

## Deep learning with point clouds

Research aims to make it easier for self-driving cars, robotics, and other applications to understand the 3D world.

## CSAIL hosts first-ever TEDxMIT

Speakers — all women — discuss everything from gravitational waves to robot nurses

## MIT CSAIL holds trustworthy AI event with Microsoft

Workshop explores technical directions for making AI safe, fair, and understandable

## MIT hosts workshop on theoretical foundations of deep learning

Last week MIT’s Institute for Foundations of Data Science (MIFODS) held an interdisciplinary workshop aimed at tackling the underlying theory behind deep learning. Led by MIT professor Aleksander Madry, the event focused on a number of research discussions at the intersection of math, statistics, and theoretical computer science.

## A step toward personalized, automated smart homes

System that automatically identifies people moving around indoors could enable self-adjusting homes.

## Holding law-enforcement accountable for electronic surveillance

CSAIL system encourages government transparency using cryptography on a public log of wiretap requests.

## Building AI systems that make fair decisions

Harini Suresh, a PhD student at MIT CSAIL, studies how to make machine learning algorithms more understandable and less biased.

## MIT professor wins Association for Computing Machinery Prize in Computing

CSAIL researcher is honored for her contributions to wireless systems

## Tracking patients’ progress with radio signals and machine learning

Novartis researchers leverage in-house startup initiative to begin digital technology research collaboration.

## Goldwasser, Micali, and Rivest win BBVA Foundation Frontiers of Knowledge Awards

This week it was announced that MIT professors and CSAIL principal investigators Shafi Goldwasser, Silvio Micali, Ronald Rivest, and former MIT professor Adi Shamir won this year’s BBVA Foundation Frontiers of Knowledge Awards in the Information and Communication Technologies category for their work in cryptography.

## Four from MIT named 2017 Association for Computer Machinery Fellows

Today four MIT faculty were named among the Association for Computer Machinery's 2017 Fellows for making “landmark contributions to computing.”

## Goldwasser gives briefing on cryptography to Congress

Last week CSAIL principal investigator Shafi Goldwasser spoke about cryptography and privacy as part of the annual congressional briefing of the American Mathematical Society (AMS) and the Mathematical Sciences Research Institute (MSRI).

## CSAIL's Daniel Jackson receives two ACM awards

This week the Association for Computer Machinery presented CSAIL principal investigator Daniel Jackson with the 2017 ACM SIGSOFT Outstanding Research Award for his pioneering work in software engineering. (This fall he also received the ACM SIGSOFT Impact Paper Award for his research method for finding bugs in code.)An EECS professor and associate director of CSAIL, Jackson was given the Outstanding Research Award for his “foundational contributions to software modeling, the creation of the modeling language Alloy, and the development of a widely used tool supporting model verification.”

## Faster page loads

A webpage today is often the sum of many different components. A user’s home page on a social-networking site, for instance, might display the latest posts from the users’ friends; the associated images, links, and comments; notifications of pending messages and comments on the user’s own posts; a list of events; a list of topics currently driving online discussions; a list of games, some of which are flagged to indicate that it’s the user’s turn; and of course the all-important ads, which the site depends on for revenues.

## Detecting emotions with wireless signals

As many a relationship book can tell you, understanding someone else’s emotions can be a difficult task. Facial expressions aren’t always reliable: a smile can conceal frustration, while a poker face might mask a winning hand.But what if technology could tell us how someone is really feeling?Researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) have developed “EQ-Radio,” a device that can detect a person’s emotions using wireless signals.

## Untraceable text messages - guaranteed

Anonymity networks, which sit on top of the public Internet, are designed to conceal people’s Web-browsing habits from prying eyes. The most popular of these, Tor, has been around for more than a decade and is used by millions of people every day.

## Tax-evading corporations, watch out: our AI knows what you're doing

CSAIL researchers recently helped develop "STEALTH," a system that uses artificial intelligence to combat tax evasion by corporations.

## Crash-proof computer systems

In a computer operating system, the file system is the part that writes data to disk and tracks where the data is stored. If the computer crashes while it’s writing data, the file system’s records can become corrupt. Hours of work could be lost, or programs could stop working properly.At a symposium this fall, MIT researchers will present the first file system that is mathematically guaranteed not to lose track of data during crashes. Although the file system is slow by today’s standards, the techniques the researchers used to verify its performance can be extended to more sophisticated designs. Ultimately, formal verification could make it much easier to develop reliable, efficient file systems.

## What better wind-speed prediction can do for the energy industry

When a power company wants to build a new wind farm, it generally hires a consultant to make wind speed measurements at the proposed site for eight to 12 months. Those measurements are correlated with historical data and used to assess the site’s power-generation capacity.This month CSAIL researchers will present a new statistical technique that yields better wind-speed predictions than existing techniques do — even when it uses only three months’ worth of data. That could save power companies time and money, particularly in the evaluation of sites for offshore wind farms, where maintaining measurement stations is particularly costly.

## Dina Katabi named Andrew (1956) and Erna Viterbi Professor of EECS

CSAIL researcher Dina Katabi has been selected for the Andrew (1956) and Erna Viterbi Professor of Electrical Engineering and Computer Science at MIT.

In his announcement, EECS Department Head Anantha Chandraksan said that Katabi 'is an ideal candidate for this professorship, given her outstanding technical contributions and leadership in wired and wireless networks.'

In his announcement, EECS Department Head Anantha Chandraksan said that Katabi 'is an ideal candidate for this professorship, given her outstanding technical contributions and leadership in wired and wireless networks.'

## Dina Katabi Featured on Bloomberg TV

MIT's Dina Katabi discusses how researchers have created a technology that may give people x-ray vision. She speaks with Deirdre Bolton on Bloomberg Television's 'Money Moves.' (Source: Bloomberg)

## Katabi and Indyk develop groundbreaking algorithm

MIT CSAIL Principal Investigators Dina Katabi and Piotr Indyk have developed a new algorithm that improves on the fast Fourier transform (FFT), a fundamental concept in the information sciences that provides a method for representing irregular signals, compressing image and audio files, and solving differential equations and stock options.