Our vision is data-driven machine learning systems that advance the quality of healthcare, the understanding of cyber arms races and the delivery of online education.
This community is interested in understanding and affecting the interaction between computing systems and society through engineering, computer science and public policy research, education, and public engagement.
Our mission is to work with policy makers and cybersecurity technologists to increase the trustworthiness and effectiveness of interconnected digital systems.
MIT App Inventor is an intuitive, visual programming environment that allows everyone – even children – to build fully functional apps for smartphones and tablets.
We develop techniques for designing, implementing, and reasoning about multiprocessor algorithms, in particular concurrent data structures for multicore machines and the mathematical foundations of the computation models that govern their behavior.
We build new protocols and architectures to improve the robustness and performance of computer networks. We develop practical solutions in wireless networks, network security, traffic engineering, congestion control, and routing.
The Systems CoR is focused on building and investigating large-scale software systems that power modern computers, phones, data centers, and networks, including operating systems, the Internet, wireless networks, databases, and other software infrastructure.
This CoR takes a unified approach to cover the full range of research areas required for success in artificial intelligence, including hardware, foundations, software systems, and applications.
EQ-Radio can infer a person’s emotions using wireless signals. It transmits an RF signal and analyzes its reflections off a person’s body to recognize his emotional state (happy, sad, etc.).
We are developing a general framework that enforces privacy transparently enabling different kinds of machine learning to be developed that are automatically privacy preserving.
IoT devices primarily use free embedded Linux which has many security flaws. We are conducting penetration tests on IoT and developing a secure version of embedded Linux.
This week it was announced that MIT professors and CSAIL principal investigators Shafi Goldwasser, Silvio Micali, Ronald Rivest, and former MIT professor Adi Shamir won this year’s BBVA Foundation Frontiers of Knowledge Awards in the Information and Communication Technologies category for their work in cryptography.
Artificial intelligence (AI) in the form of “neural networks” are increasingly used in technologies like self-driving cars to be able to see and recognize objects. Such systems could even help with tasks like identifying explosives in airport security lines.
A webpage today is often the sum of many different components. A user’s home page on a social-networking site, for instance, might display the latest posts from the users’ friends; the associated images, links, and comments; notifications of pending messages and comments on the user’s own posts; a list of events; a list of topics currently driving online discussions; a list of games, some of which are flagged to indicate that it’s the user’s turn; and of course the all-important ads, which the site depends on for revenues.
When a power company wants to build a new wind farm, it generally hires a consultant to make wind speed measurements at the proposed site for eight to 12 months. Those measurements are correlated with historical data and used to assess the site’s power-generation capacity.This month CSAIL researchers will present a new statistical technique that yields better wind-speed predictions than existing techniques do — even when it uses only three months’ worth of data. That could save power companies time and money, particularly in the evaluation of sites for offshore wind farms, where maintaining measurement stations is particularly costly.