Our vision is data-driven machine learning systems that advance the quality of healthcare, the understanding of cyber arms races and the delivery of online education.
This community is interested in understanding and affecting the interaction between computing systems and society through engineering, computer science and public policy research, education, and public engagement.
We aim to develop the science of autonomy toward a future with robots and AI systems integrated into everyday life, supporting people with cognitive and physical tasks.
Our mission is to work with policy makers and cybersecurity technologists to increase the trustworthiness and effectiveness of interconnected digital systems.
Our projects are centered around the problems of navigation and mapping for autonomous mobile robots operating in underwater and terrestrial environments.
The Systems CoR is focused on building and investigating large-scale software systems that power modern computers, phones, data centers, and networks, including operating systems, the Internet, wireless networks, databases, and other software infrastructure.
This CoR takes a unified approach to cover the full range of research areas required for success in artificial intelligence, including hardware, foundations, software systems, and applications.
Alloy is a language for describing structures and a tool for exploring them. It has been used in a wide range of applications from finding holes in security mechanisms to designing telephone switching networks. Hundreds of projects have used Alloy for design analysis, for verification, for simulation, and as a backend for many other kinds of analysis and synthesis tools, and Alloy is currently being taught in courses worldwide.
Self-driving cars are likely to be safer, on average, than human-driven cars. But they may fail in new and catastrophic ways that a human driver could prevent. This project is designing a new architecture for a highly dependable self-driving car.
Our goal is to create an online risk-aware planner for vehicle maneuvers that can make driving safer and less stressful through a “parallel” autonomous system that assists the driver by watching for risky situations, and by helping the driver take proactive, compensating actions before they become crises.
We are developing a general framework that enforces privacy transparently enabling different kinds of machine learning to be developed that are automatically privacy preserving.
Our goal is to allow planners to exploit the forces and contacts between objects so as to carry out complex manipulation tasks in the presence of uncertainty.
Our goal is to create a theoretical framework and effective machine learning algorithms for robust, reliable control of autonomous vehicles. Key threads include developing metrics of confidence; and designing deep learning algorithms for parallel autonomy.
In this project, we aim to develop a framework that can ensure and certify the safety of an autonomous vehicle. By leveraging research from the area of formal verification, this framework aims to assess the safety, i.e., free of collisions, of a broad class of autonomous car controllers/planners for a given traffic model.
Developed at MIT’s Computer Science and Artificial Intelligence Laboratory, a team of robots can self-assemble to form different structures with applications in inspection, disaster response, and manufacturing
Genome-wide association studies, which look for links between particular genetic variants and incidence of disease, are the basis of much modern biomedical research.
For all the progress made in self-driving technologies, there still aren’t many places where they can actually drive. Companies like Google only test their fleets in major cities where they’ve spent countless hours meticulously labeling the exact 3-D positions of lanes, curbs, off-ramps, and stop signs.