The Weiss Lab seeks to create integrated biological systems capable of autonomously performing useful tasks, and to elucidate the design principles underlying complex phenotypes.
This CoR aims to develop AI technology that synthesizes symbolic reasoning, probabilistic reasoning for dealing with uncertainty in the world, and statistical methods for extracting and exploiting regularities in the world, into an integrated picture of intelligence that is informed by computational insights and by cognitive science.
This community is interested in understanding and affecting the interaction between computing systems and society through engineering, computer science and public policy research, education, and public engagement.
MIT App Inventor is an intuitive, visual programming environment that allows everyone – even children – to build fully functional apps for smartphones and tablets.
We focus on understanding the problem-solving strategies used by scientists and engineers, with the goals of automating parts of the process and formalizing educational methods.
This CoR takes a unified approach to cover the full range of research areas required for success in artificial intelligence, including hardware, foundations, software systems, and applications.
The Weiss Lab seeks to create integrated biological systems capable of autonomously performing useful tasks, and to elucidate the design principles underlying complex phenotypes.
EQ-Radio can infer a person’s emotions using wireless signals. It transmits an RF signal and analyzes its reflections off a person’s body to recognize his emotional state (happy, sad, etc.).
We develop algorithms, systems and software architectures for automating reconstruction of accurate representations of neural tissue structures, such as nanometer-scale neurons' morphology and synaptic connections in the mammalian cortex.
Computer scientists often develop mathematical models to understand how animals move, enabling breakthroughs in designing things like microrobotic wings and artificial bone structures.
MIT’s Amar Gupta and his wife Poonam were on a trip to Los Angeles in 2016 when she fell and broke both wrists. She was whisked by ambulance to a reputable hospital. But staff informed the couple that they couldn’t treat her there, nor could they find another local hospital that would do so. In the end, the couple was forced to take the hospital’s stunning advice: return to Boston for treatment.
Doctors are often deluged by signals from charts, test results, and other metrics to keep track of. It can be difficult to integrate and monitor all of these data for multiple patients while making real-time treatment decisions, especially when data is documented inconsistently across hospitals. In a new pair of papers, researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) explore ways for computers to help doctors make better medical decisions.
By crunching 130 million mouse-clicks, two CSAIL researchers have developed a machine-learning model that can predict with surprising accuracy whether or not a MOOC student will drop out of a given course.