This CoR aims to develop AI technology that synthesizes symbolic reasoning, probabilistic reasoning for dealing with uncertainty in the world, and statistical methods for extracting and exploiting regularities in the world, into an integrated picture of intelligence that is informed by computational insights and by cognitive science.
We aim to develop the science of autonomy toward a future with robots and AI systems integrated into everyday life, supporting people with cognitive and physical tasks.
We aim to develop a systematic framework for robots to build models of the world and to use these to make effective and safe choices of actions to take in complex scenarios.
The robot garden provides an aesthetically pleasing educational platform that can visualize computer science concepts and encourage young students to pursue programming and robotics.
The Robot Compiler allows non-engineering users to rapidly fabricate customized robots, facilitating the proliferation of robots in everyday life. It thereby marks an important step towards the realization of personal robots that have captured imaginations for decades.
In recent years, a host of Hollywood blockbusters — including “The Fast and the Furious 7,” “Jurassic World,” and “The Wolf of Wall Street” — have included aerial tracking shots provided by drone helicopters outfitted with cameras. Those shots required separate operators for the drones and the cameras, and careful planning to avoid collisions. But a team of researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) and ETH Zurich hope to make drone cinematography more accessible, simple, and reliable.