We aim to develop the science of autonomy toward a future with robots and AI systems integrated into everyday life, supporting people with cognitive and physical tasks.
We focus on understanding the problem-solving strategies used by scientists and engineers, with the goals of automating parts of the process and formalizing educational methods.
We study the problem of 3D object generation. We propose a novel framework, 3D Generative Adversarial Network (3D-GAN), leveraging recent advances in volumetric convolutional networks and generative adversarial nets.
We are developing a general framework that enforces privacy transparently enabling different kinds of machine learning to be developed that are automatically privacy preserving.
We aim to understand 3D object structure from a single image. We propose an end-to-end framework which sequentially estimates 2D keypoint heatmaps and 3D object structure, by training it on both real 2D-annotated images and synthetic 3D data and by integrating a 3D-to-2D projection layer.
Developed at MIT’s Computer Science and Artificial Intelligence Laboratory, a team of robots can self-assemble to form different structures with applications in inspection, disaster response, and manufacturing
Google AI’s Jeff Dean has a seemingly straightforward objective: he wants to use a collection of trainable mathematical units organized in layers to solve complicated tasks that will ultimately benefit many parts of society.
This week it was announced that MIT professors and CSAIL principal investigators Shafi Goldwasser, Silvio Micali, Ronald Rivest, and former MIT professor Adi Shamir won this year’s BBVA Foundation Frontiers of Knowledge Awards in the Information and Communication Technologies category for their work in cryptography.
Last month, three MIT materials scientists and their colleagues published a paper describing a new artificial-intelligence system that can pore through scientific papers and extract “recipes” for producing particular types of materials.
Most robots are programmed using one of two methods: learning from demonstration, in which they watch a task being done and then replicate it, or via motion-planning techniques such as optimization or sampling, which require a programmer to explicitly specify a task’s goals and constraints.
The butt of jokes as little as 10 years ago, automatic speech recognition is now on the verge of becoming people’s chief means of interacting with their principal computing devices. In anticipation of the age of voice-controlled electronics, MIT researchers have built a low-power chip specialized for automatic speech recognition. Whereas a cellphone running speech-recognition software might require about 1 watt of power, the new chip requires between 0.2 and 10 milliwatts, depending on the number of words it has to recognize.