This community is interested in understanding and affecting the interaction between computing systems and society through engineering, computer science and public policy research, education, and public engagement.
This CoR takes a unified approach to cover the full range of research areas required for success in artificial intelligence, including hardware, foundations, software systems, and applications.
The challenge that motivates the ANA group is to foster a healthy future for the Internet. The interplay of private sector investment, public sector regulation and public interest advocacy, as well as the global diversity in drivers and aspirations, makes for an uncertain future.
We design software for high performance computing, develop algorithms for numerical linear algebra, and research random matrix theory and its applications.
This community is interested in understanding and affecting the interaction between computing systems and society through engineering, computer science and public policy research, education, and public engagement.
We seek to develop techniques for securing tomorrow's global information infrastructure by exploring theoretical foundations, near-term practical applications, and long-range speculative research.
We are an interdisciplinary group of researchers blending approaches from human-computer interaction, social computing, databases, information management, and databases.
Our mission is to work with policy makers and cybersecurity technologists to increase the trustworthiness and effectiveness of interconnected digital systems.
The Systems CoR is focused on building and investigating large-scale software systems that power modern computers, phones, data centers, and networks, including operating systems, the Internet, wireless networks, databases, and other software infrastructure.
We work on a wide range of problems in distributed computing theory. We study algorithms and lower bounds for typical problems that arise in distributed systems---like resource allocation, implementing shared memory abstractions, and reliable communication.
This CoR takes a unified approach to cover the full range of research areas required for success in artificial intelligence, including hardware, foundations, software systems, and applications.
Alloy is a language for describing structures and a tool for exploring them. It has been used in a wide range of applications from finding holes in security mechanisms to designing telephone switching networks. Hundreds of projects have used Alloy for design analysis, for verification, for simulation, and as a backend for many other kinds of analysis and synthesis tools, and Alloy is currently being taught in courses worldwide.
To further parallelize co-prime sampling based sparse sensing, we introduce Diophantine Equation in different algebraic structures to build generalized lattice arrays.
With strong relationship to generalized Chinese Remainder Theorem, the geometry properties in the remainder code space, a special lattice space, are explored.
To enable privacy preservation in decentralized optimization, differential privacy is the most commonly used approach. However, under such scenario, the trade-off between accuracy (even efficiency) and privacy is inevitable. In this project, distributed numerical optimization scheme incorporated with lightweight cryptographic information sharing are explored. The affect on the convergence rate from network topology is considered.
We are developing a general framework that enforces privacy transparently enabling different kinds of machine learning to be developed that are automatically privacy preserving.
The Robot Compiler allows non-engineering users to rapidly fabricate customized robots, facilitating the proliferation of robots in everyday life. It thereby marks an important step towards the realization of personal robots that have captured imaginations for decades.
IoT devices primarily use free embedded Linux which has many security flaws. We are conducting penetration tests on IoT and developing a secure version of embedded Linux.
Starling is a scalable query execution engine built on cloud function services that computes at a fine granularity, helping people more easily match workload demand.
Last week MIT’s Institute for Foundations of Data Science (MIFODS) held an interdisciplinary workshop aimed at tackling the underlying theory behind deep learning. Led by MIT professor Aleksander Madry, the event focused on a number of research discussions at the intersection of math, statistics, and theoretical computer science.
This week it was announced that MIT professors and CSAIL principal investigators Shafi Goldwasser, Silvio Micali, Ronald Rivest, and former MIT professor Adi Shamir won this year’s BBVA Foundation Frontiers of Knowledge Awards in the Information and Communication Technologies category for their work in cryptography.
Artificial intelligence (AI) in the form of “neural networks” are increasingly used in technologies like self-driving cars to be able to see and recognize objects. Such systems could even help with tasks like identifying explosives in airport security lines.