# Research

- Research Areas
- Impact Areas

3 Group Results matching all criteria

#### Community of Research

## Vertical AI Community of Research

This CoR takes a unified approach to cover the full range of research areas required for success in artificial intelligence, including hardware, foundations, software systems, and applications.

#### Community of Research

## Theory of Computation Community of Research

The goal of the Theory of Computation CoR is to study the fundamental strengths and limits of computation as well as how these interact with mathematics, computer science, and other disciplines.

1 News Results matching all criteria

## CSAIL hosts first-ever TEDxMIT

Speakers — all women — discuss everything from gravitational waves to robot nurses

41 Group Results

#### Research Group

## MIT App Inventor

MIT App Inventor is an intuitive, visual programming environment that allows everyone – even children – to build fully functional apps for smartphones and tablets.

#### Research Group

## Multicore Algorithmics

We develop techniques for designing, implementing, and reasoning about multiprocessor algorithms, in particular concurrent data structures for multicore machines and the mathematical foundations of the computation models that govern their behavior.

#### Research Group

## Multimodal Understanding Group

Our objective is to build techniques, software, and hardware that enable natural interaction with

computation.

computation.

#### Research Group

## Programming Languages & Verification

Mission: improve the software development process by replacing ugly development techniques with beautiful ones

Secret weapon: applied mathematical logic, including computer theorem proving (especially Coq) and type systems

Secret weapon: applied mathematical logic, including computer theorem proving (especially Coq) and type systems

#### Research Group

## Programming Languages and Software Engineering

We research programming languages, software engineering, and related work in human-computer interaction.

#### Research Group

## Programming Methodology Group

We develop innovative approaches for building software and for solving problems in modern parallel and distributed software systems.

#### Research Group

## Programming Systems Group

Investigating the semantics, design, and implementation of programming systems (programming languages, compilers, and runtime systems).

#### Research Group

## Quantum Information Science Group

Our research interests center around the capabilities and limits of quantum computers, and computational complexity theory more generally.

#### Research Group

## Software Design Group

Our goal is to find better ways to make software, and ways to make software better.

#### Research Group

## Supertech Research Group

We investigate the technologies that support scalable high-performance computing, including hardware, software, and theory.

#### Research Group

## Sussman Lab

We focus on understanding the problem-solving strategies used by scientists and engineers, with the goals of automating parts of the process and formalizing educational methods.

#### Community of Research

## Systems Community of Research

The Systems CoR is focused on building and investigating large-scale software systems that power modern computers, phones, data centers, and networks, including operating systems, the Internet, wireless networks, databases, and other software infrastructure.

#### Community of Research

## Theory of Computation Community of Research

The goal of the Theory of Computation CoR is to study the fundamental strengths and limits of computation as well as how these interact with mathematics, computer science, and other disciplines.

#### Research Group

## Theory of Distributed Systems Group

We work on a wide range of problems in distributed computing theory. We study algorithms and lower bounds for typical problems that arise in distributed systems---like resource allocation, implementing shared memory abstractions, and reliable communication.

#### Research Group

## Usable Programming Group

We design and study systems that improve the learnability, efficiency, and safety of software development.

#### Community of Research

## Vertical AI Community of Research

This CoR takes a unified approach to cover the full range of research areas required for success in artificial intelligence, including hardware, foundations, software systems, and applications.

#### Research Group

## Visualization Group

We use visualization as a petri dish to study intelligence augmentation, or how can computational representations and software systems help amplify our cognition and creativity, while respecting our agency?

105 Project Results

#### Project

## A new way of handling all-to-all broadcast

We design a new all-to-all broadcasts scheme with significantly less communication cost using aggregate signatures.

#### Project

## A Simplified and Extensible Cilk Runtime for Research

CilkS is a new runtime system for the Cilk multithreaded programming environment which makes it easy to experiment with new algorithms, data structures, and programming linguistics.

#### Project

## Active Learning of Models for Planning

We aim to develop a systematic framework for robots to build models of the world and to use these to make effective and safe choices of actions to take in complex scenarios.

#### Project

## Adversarial Cyber Security

Our goal is to understand the nature of cyber security arms races between malicious and bonafide parties. Our vision is autonomous cyber defenses that anticipate and take measures against counter attacks.

#### Project

## Algebraic Techniques for Algorithm Design

We work on improving the algorithms for algebraic problems like matrix multiplication, and using these to design algorithms for fundamental non-algebraic problems.

#### Project

## Algorithmic Aspects of Performance Engineering

The project concerns algorithmic solutions for writing fast codes.

#### Project

## Alloy

Alloy is a language for describing structures and a tool for exploring them. It has been used in a wide range of applications from finding holes in security mechanisms to designing telephone switching networks. Hundreds of projects have used Alloy for design analysis, for verification, for simulation, and as a backend for many other kinds of analysis and synthesis tools, and Alloy is currently being taught in courses worldwide.

#### Project

## An Algorithmic Theory of Brain Networks

We are developing an algorithmic theory for brain networks, based on simple synchronized stochastic graph-based neural network models.

#### Project

## An Interlock for Self Driving Cars

Self-driving cars are likely to be safer, on average, than human-driven cars. But they may fail in new and catastrophic ways that a human driver could prevent. This project is designing a new architecture for a highly dependable self-driving car.

#### Project

## Approximating the diameter of a directed graph

There is a family of approximation algorithms for computing the diameter of an undirected graph that give a time/accuracy trade-off and our goal is to extend these results to directed graphs.

#### Project

## Aspect-Augmented Adversarial Networks for Domain Adaptation

We propose a novel aspect-augmented adversarial network for cross-aspect and cross-domain adaptation tasks. The effectiveness of our approach suggests the potential application of adversarial networks to a broader range of NLP tasks for improved representation learning, such as machine translation and language generation.

#### Project

## Automated Attack Tree Generation for Critical Infrastructure

Using AI methods, we are developing an attack tree generator that automatically enumerates cyberattack vectors for industrial control systems in critical infrastructure (electric grids, water networks and transportation systems). The generator can quickly assess cyber risk for a system at scale.

#### Project

## Basing Cryptography on Structured Hardness

We aim to base a variety of cryptographic primitives on complexity theoretic assumptions. We focus on the assumption that there exist highly structured problems --- admitting so called "zero-knowledge" protocols --- that are nevertheless hard to compute

#### Project

## Bayesian Optimization for Global Optimization of Expensive Black-box Functions

We study the fundamentals of Bayesian optimization and develop efficient Bayesian optimization methods for global optimization of expensive black-box functions originated from a range of different applications.

#### Project

## Bellmania

Deductive synthesis for large-scale implementations of dynamic programming algorithms

#### Project

## Better Models for Ride-Sharing

Traffic is not just a nuisance for drivers: It’s also a public health hazard and bad news for the economy.

#### Project

## Bridging Theory and Practice in Shared-Memory Parallel Algorithm Design

This project aims to design parallel algorithms for shared-memory machines that are efficient both in theory and also in practice.

#### Project

## CilkPride

CilkPride is a programming environment that aims to make performance and safety information always available and appropriately visible to the programmer.

#### Project

## Compilation Using Correct-by-Construction Program Synthesis

We're using proof assistants to build correct, extensible compilers, by rephrasing compilation in terms of producing mathematical proofs.

#### Project

## Compression and Reordering for Parallel Graph Analytics

We plan to develop a suite of graph compression and reordering techniques as part of the Ligra parallel graph processing framework to reduce space usage and improve performance of graph algorithms.

#### Project

## Coresets for Machine Learning Algorithms

Our goal is to design novel data compression techniques to accelerate popular machine learning algorithms in Big Data and streaming settings.

#### Project

## Data Civilizer

Data scientists universally report that they spend at least 80% of their time finding data sets of interest, accessing them, cleaning them and assembling them into a unified whole.

#### Project

## Data Garbling: Computing on Encrypted Data

We are investigating the limits of computing on encrypted data, with a focus on the private outsourcing of computation over sensitive data.

#### Project

## Data Warehouse Construction

Historically, DBMSs in the warehouse space partitioned their data across a shared nothing

cluster.

cluster.

104 News Results

## Looking into the black box

Recent advances give theoretical insight into why deep learning networks are successful.

## Algorithm finds hidden connections between paintings at the Met

A team from MIT helped create an image retrieval system to find the closest matches of paintings from different artists and cultures.

## Wu receives ACM Doctoral Dissertation Honorable Mention award

ACM, the Association for Computing Machinery announced this week that MIT CSAIL PhD student ‘19 Jiajun Wu was selected for an honorable mention for his dissertation “Learning to See the Physical World.”

## New glove lets you incorporate real-life objects into virtual worlds

New glove lets you incorporate real-life objects into virtual worlds

## Giving soft robots senses

In a pair of papers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL), two teams enable better sense and perception for soft robotic grippers.

## Visualizing the world beyond the frame

Researchers test how far artificial intelligence models can go in dreaming up varied poses and colors of objects and animals in photos.

## Automating the search for entirely new “curiosity” algorithms

Researchers show that computers can “write” algorithms that adapt to radically different environments better than algorithms designed by humans.

## CSAIL device lets doctors monitor COVID-19 patients from a distance

Wireless system helps Boston retirement home care for COVID patients while reducing risk of contagion

## Automated Covid-19 contact tracing - while preserving privacy

New system uses Bluetooth signals from your smartphone, with the goal of automating Covid-19 contact tracing while preserving privacy

## System trains driverless cars in simulation before they hit the road

Using a photorealistic simulation engine, vehicles learn to drive in the real world and recover from near-crash scenarios.

## Armando Solar-Lezama wins NSF Expeditions Grant

This week it was announced that MIT professor Armando Solar-Lezama has received a prestigious NSF award for junior faculty, to go towards a new project that could impact scientific discovery in domains as diverse as organic chemistry, RNA splicing and cognitive science.

## “Doing machine learning the right way”

Professor Aleksander Madry strives to build machine-learning models that are more reliable, understandable, and robust.

## Showing robots how to do your chores

By observing humans, robots learn to perform complex tasks, such as setting a table.

## Protecting sensitive metadata so it can’t be used for surveillance

System ensures hackers eavesdropping on large networks can’t find out who’s communicating and when they’re doing so.

## Automated system can rewrite outdated sentences in Wikipedia articles

Text-generating tool pinpoints and replaces specific information in sentences while retaining humanlike grammar and style.

## “Sensorized” skin helps soft robots find their bearings

Flexible sensors and an artificial intelligence model tell deformable robots how their bodies are positioned in a 3D environment.

## Hey Alexa: Sorry I fooled you

MIT’s new system TextFooler can trick the types of natural-language-processing systems that Google uses to help power its search results, including audio for Google Home

## Giving cryptocurrency users more bang for their buck

Routing scheme boosts efficiency in networks that help speed up blockchain transactions.

## Most websites don't follow European cookie consent laws

Just over one in ten sites conform to EU laws, according to researchers.

## How well can computers connect symptoms to diseases?

A new MIT study finds “health knowledge graphs,” which show relationships between symptoms and diseases and are intended to help with clinical diagnosis, can fall short for certain conditions and patient populations. The results also suggest ways to boost their performance.

## Finding the true potential of algorithms

Using mathematical theory, Virginia Williams coaxes algorithms to run faster or proves they’ve hit their maximum speed.

## Daniel Weitzner named National Academy of Public Administration 2019 Fellow

Daniel Weitzner named National Academy of Public Administration 2019 Fellow

## Autonomous system improves environmental sampling at sea

Robotic boats could more rapidly locate the most valuable sampling spots in uncharted waters.

## Pushy robots learn the fundamentals of object manipulation

Systems “learn” from novel dataset that captures how pushed objects move, to improve their physical interactions with new objects.