The Systems CoR is focused on building and investigating large-scale software systems that power modern computers, phones, data centers, and networks, including operating systems, the Internet, wireless networks, databases, and other software infrastructure.
This community is interested in understanding and affecting the interaction between computing systems and society through engineering, computer science and public policy research, education, and public engagement.
We are an interdisciplinary group of researchers blending approaches from human-computer interaction, social computing, databases, information management, and databases.
Our mission is to work with policy makers and cybersecurity technologists to increase the trustworthiness and effectiveness of interconnected digital systems.
MIT App Inventor is an intuitive, visual programming environment that allows everyone – even children – to build fully functional apps for smartphones and tablets.
We build new protocols and architectures to improve the robustness and performance of computer networks. We develop practical solutions in wireless networks, network security, traffic engineering, congestion control, and routing.
The Systems CoR is focused on building and investigating large-scale software systems that power modern computers, phones, data centers, and networks, including operating systems, the Internet, wireless networks, databases, and other software infrastructure.
This CoR takes a unified approach to cover the full range of research areas required for success in artificial intelligence, including hardware, foundations, software systems, and applications.
EQ-Radio can infer a person’s emotions using wireless signals. It transmits an RF signal and analyzes its reflections off a person’s body to recognize his emotional state (happy, sad, etc.).
The creation of low-power circuits capable of speech recognition and speaker verification will enable spoken interaction on a wide variety of devices in the era of Internet of Things.
We are developing a general framework that enforces privacy transparently enabling different kinds of machine learning to be developed that are automatically privacy preserving.
IoT devices primarily use free embedded Linux which has many security flaws. We are conducting penetration tests on IoT and developing a secure version of embedded Linux.
Last week MIT’s Institute for Foundations of Data Science (MIFODS) held an interdisciplinary workshop aimed at tackling the underlying theory behind deep learning. Led by MIT professor Aleksander Madry, the event focused on a number of research discussions at the intersection of math, statistics, and theoretical computer science.
This week it was announced that MIT professors and CSAIL principal investigators Shafi Goldwasser, Silvio Micali, Ronald Rivest, and former MIT professor Adi Shamir won this year’s BBVA Foundation Frontiers of Knowledge Awards in the Information and Communication Technologies category for their work in cryptography.
Artificial intelligence (AI) in the form of “neural networks” are increasingly used in technologies like self-driving cars to be able to see and recognize objects. Such systems could even help with tasks like identifying explosives in airport security lines.
A webpage today is often the sum of many different components. A user’s home page on a social-networking site, for instance, might display the latest posts from the users’ friends; the associated images, links, and comments; notifications of pending messages and comments on the user’s own posts; a list of events; a list of topics currently driving online discussions; a list of games, some of which are flagged to indicate that it’s the user’s turn; and of course the all-important ads, which the site depends on for revenues.