This CoR brings together researchers at CSAIL working across a broad swath of application domains. Within these lie novel and challenging machine learning problems serving science, social science and computer science.
This CoR aims to develop AI technology that synthesizes symbolic reasoning, probabilistic reasoning for dealing with uncertainty in the world, and statistical methods for extracting and exploiting regularities in the world, into an integrated picture of intelligence that is informed by computational insights and by cognitive science.
This community is interested in understanding and affecting the interaction between computing systems and society through engineering, computer science and public policy research, education, and public engagement.
The focus of the HCI CoR is inventing new systems and technology that lie at the interface between people and computation, and understanding their design, implementation, and societal impact.
Our mission is to work with policy makers and cybersecurity technologists to increase the trustworthiness and effectiveness of interconnected digital systems.
The goal of the Theory of Computation CoR is to study the fundamental strengths and limits of computation as well as how these interact with mathematics, computer science, and other disciplines.
Led by Web inventor and Director, Tim Berners-Lee and CEO Jeff Jaffe, the W3C focus is on leading the World Wide Web to its full potential by developing standards, protocols and guidelines that ensure the long-term growth of the Web
Alloy is a language for describing structures and a tool for exploring them. It has been used in a wide range of applications from finding holes in security mechanisms to designing telephone switching networks. Hundreds of projects have used Alloy for design analysis, for verification, for simulation, and as a backend for many other kinds of analysis and synthesis tools, and Alloy is currently being taught in courses worldwide.
Knitting is the new 3d printing. It has become popular again with the widespread availability of patterns and templates, together with the maker movements. Lower-cost industrial knitting machines are starting to emerge, but we are still missing the corresponding design tools. Our goal is to fill this gap.
Our goal is to develop collaborative agents (software or robots) that can efficiently communicate with their human teammates. Key threads involve designing algorithms for inferring human behavior and for decision-making under uncertainty.
Almost every object we use is developed with computer-aided design (CAD). While CAD programs are good for creating designs, using them to actually improve existing designs can be difficult and time-consuming.
Uhura is an autonomous system that collaborates with humans in planning and executing complex tasks, especially under over-subscribed and risky situations.
Genome-wide association studies, which look for links between particular genetic variants and incidence of disease, are the basis of much modern biomedical research.
Last week CSAIL hosted the fourth “Hot Topics in Computing” speaker series, a monthly forum where experts hold discussions with community members on various hot-button tech topics.
Most robots are programmed using one of two methods: learning from demonstration, in which they watch a task being done and then replicate it, or via motion-planning techniques such as optimization or sampling, which require a programmer to explicitly specify a task’s goals and constraints.
The butt of jokes as little as 10 years ago, automatic speech recognition is now on the verge of becoming people’s chief means of interacting with their principal computing devices. In anticipation of the age of voice-controlled electronics, MIT researchers have built a low-power chip specialized for automatic speech recognition. Whereas a cellphone running speech-recognition software might require about 1 watt of power, the new chip requires between 0.2 and 10 milliwatts, depending on the number of words it has to recognize.