This community is interested in understanding and affecting the interaction between computing systems and society through engineering, computer science and public policy research, education, and public engagement.
We are an interdisciplinary group of researchers blending approaches from human-computer interaction, social computing, databases, information management, and databases.
We develop techniques for designing, implementing, and reasoning about multiprocessor algorithms, in particular concurrent data structures for multicore machines and the mathematical foundations of the computation models that govern their behavior.
The Systems CoR is focused on building and investigating large-scale software systems that power modern computers, phones, data centers, and networks, including operating systems, the Internet, wireless networks, databases, and other software infrastructure.
We work on a wide range of problems in distributed computing theory. We study algorithms and lower bounds for typical problems that arise in distributed systems---like resource allocation, implementing shared memory abstractions, and reliable communication.
This CoR takes a unified approach to cover the full range of research areas required for success in artificial intelligence, including hardware, foundations, software systems, and applications.
We aim to develop a systematic framework for robots to build models of the world and to use these to make effective and safe choices of actions to take in complex scenarios.
The robot garden provides an aesthetically pleasing educational platform that can visualize computer science concepts and encourage young students to pursue programming and robotics.
The creation of low-power circuits capable of speech recognition and speaker verification will enable spoken interaction on a wide variety of devices in the era of Internet of Things.
The Robot Compiler allows non-engineering users to rapidly fabricate customized robots, facilitating the proliferation of robots in everyday life. It thereby marks an important step towards the realization of personal robots that have captured imaginations for decades.
Uhura is an autonomous system that collaborates with humans in planning and executing complex tasks, especially under over-subscribed and risky situations.
Last week MIT’s Institute for Foundations of Data Science (MIFODS) held an interdisciplinary workshop aimed at tackling the underlying theory behind deep learning. Led by MIT professor Aleksander Madry, the event focused on a number of research discussions at the intersection of math, statistics, and theoretical computer science.
This week it was announced that MIT professors and CSAIL principal investigators Shafi Goldwasser, Silvio Micali, Ronald Rivest, and former MIT professor Adi Shamir won this year’s BBVA Foundation Frontiers of Knowledge Awards in the Information and Communication Technologies category for their work in cryptography.
In recent years, a host of Hollywood blockbusters — including “The Fast and the Furious 7,” “Jurassic World,” and “The Wolf of Wall Street” — have included aerial tracking shots provided by drone helicopters outfitted with cameras. Those shots required separate operators for the drones and the cameras, and careful planning to avoid collisions. But a team of researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) and ETH Zurich hope to make drone cinematography more accessible, simple, and reliable.
When a power company wants to build a new wind farm, it generally hires a consultant to make wind speed measurements at the proposed site for eight to 12 months. Those measurements are correlated with historical data and used to assess the site’s power-generation capacity.This month CSAIL researchers will present a new statistical technique that yields better wind-speed predictions than existing techniques do — even when it uses only three months’ worth of data. That could save power companies time and money, particularly in the evaluation of sites for offshore wind farms, where maintaining measurement stations is particularly costly.