#### Research Group

## Algorithms Group

We devise new mathematical tools to tackle the increasing difficulty and importance of problems we pose to computers.

- Impact Areas
- Research Areas

21 Group Results

We devise new mathematical tools to tackle the increasing difficulty and importance of problems we pose to computers.

We design software for high performance computing, develop algorithms for numerical linear algebra, and research random matrix theory and its applications.

This CoR brings together researchers at CSAIL working across a broad swath of application domains. Within these lie novel and challenging machine learning problems serving science, social science and computer science.

Our main goal is developing a computationally based understanding of human intelligence and establishing an engineering practice based on that understanding.

The MIT Center for Deployable Machine Learning (CDML) works towards creating AI systems that are robust, reliable and safe for real-world deployment.

We focus on furthering the application of technology and artificial intelligence in medicine and health-care.

Our interests span quantum complexity theory, barriers to solving P versus NP, theoretical computer science with a focus on probabilistically checkable proofs (PCP), pseudo-randomness, coding theory, and algorithms.

We combine methods from computer science, neuroscience and cognitive science to explain and model how perception and cognition are realized in human and machine.

This community is interested in understanding and affecting the interaction between computing systems and society through engineering, computer science and public policy research, education, and public engagement.

We seek to develop techniques for securing tomorrow's global information infrastructure by exploring theoretical foundations, near-term practical applications, and long-range speculative research.

We are investigating decentralized technologies that affect social change.

Our group studies geometric problems in computer graphics, computer vision, machine learning, optimization, and other disciplines.

We are an interdisciplinary group of researchers blending approaches from human-computer interaction, social computing, databases, information management, and databases.

We develop techniques for designing, implementing, and reasoning about multiprocessor algorithms, in particular concurrent data structures for multicore machines and the mathematical foundations of the computation models that govern their behavior.

Our objective is to build techniques, software, and hardware that enable natural interaction with

computation.

computation.

Our research interests center around the capabilities and limits of quantum computers, and computational complexity theory more generally.

The goal of the Theory of Computation CoR is to study the fundamental strengths and limits of computation as well as how these interact with mathematics, computer science, and other disciplines.

We work on a wide range of problems in distributed computing theory. We study algorithms and lower bounds for typical problems that arise in distributed systems---like resource allocation, implementing shared memory abstractions, and reliable communication.

This CoR takes a unified approach to cover the full range of research areas required for success in artificial intelligence, including hardware, foundations, software systems, and applications.

The Weiss Lab seeks to create integrated biological systems capable of autonomously performing useful tasks, and to elucidate the design principles underlying complex phenotypes.

15 Project Results

We aim to develop a systematic framework for robots to build models of the world and to use these to make effective and safe choices of actions to take in complex scenarios.

The project concerns algorithmic solutions for writing fast codes.

We study the fundamentals of Bayesian optimization and develop efficient Bayesian optimization methods for global optimization of expensive black-box functions originated from a range of different applications.

We are investigating the limits of computing on encrypted data, with a focus on the private outsourcing of computation over sensitive data.

Wikipedia is one of the most widely accessed encyclopedia sites in the world, including by scientists. Our project aims to investigate just how far Wikipedia’s influence goes in shaping science.

Our goal is to investigate deterministic algorithms for robotic task and motion planning.

To further parallelize co-prime sampling based sparse sensing, we introduce Diophantine Equation in different algebraic structures to build generalized lattice arrays.

With strong relationship to generalized Chinese Remainder Theorem, the geometry properties in the remainder code space, a special lattice space, are explored.

With strong relationship to generalized Chinese Remainder Theorem, the geometry properties in the remainder code space, a special lattice space, are explored.

The robot garden provides an aesthetically pleasing educational platform that can visualize computer science concepts and encourage young students to pursue programming and robotics.

Help robots learn faster by providing demonstrations when they need help

To enable privacy preservation in decentralized optimization, differential privacy is the most commonly used approach. However, under such scenario, the trade-off between accuracy (even efficiency) and privacy is inevitable. In this project, distributed numerical optimization scheme incorporated with lightweight cryptographic information sharing are explored. The affect on the convergence rate from network topology is considered.

To explore how randomness in connectivity can improve the performance of secure multi-party computation (MPC) and the properties of communication graph to support MPC.

We work towards a principled understanding of the current machine learning toolkit and making this toolkit be robust and reliable.

The Robot Compiler allows non-engineering users to rapidly fabricate customized robots, facilitating the proliferation of robots in everyday life. It thereby marks an important step towards the realization of personal robots that have captured imaginations for decades.

Starling is a scalable query execution engine built on cloud function services that computes at a fine granularity, helping people more easily match workload demand.

Uhura is an autonomous system that collaborates with humans in planning and executing complex tasks, especially under over-subscribed and risky situations.

20 News Results

In a pair of papers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL), two teams enable better sense and perception for soft robotic grippers.

Wireless system helps Boston retirement home care for COVID patients while reducing risk of contagion

System ensures hackers eavesdropping on large networks can’t find out who’s communicating and when they’re doing so.

When designing actuators involves too many variables for humans to test by hand, this system can step in.

Speakers — all women — discuss everything from gravitational waves to robot nurses

Workshop explores technical directions for making AI safe, fair, and understandable

Last week MIT’s Institute for Foundations of Data Science (MIFODS) held an interdisciplinary workshop aimed at tackling the underlying theory behind deep learning. Led by MIT professor Aleksander Madry, the event focused on a number of research discussions at the intersection of math, statistics, and theoretical computer science.

CSAIL’s approach uses algorithms and “2.5-D” sketches to let computers visualize images from any perspective

Neural network that securely finds potential drugs could encourage large-scale pooling of sensitive data.

Breakthrough CSAIL system suggests robots could one day be able to see well enough to be useful in people’s homes and offices.

Users can quickly visualize designs that optimize multiple parameters at once.

CSAIL system encourages government transparency using cryptography on a public log of wiretap requests.

MIT professor discusses using paper-folding for applications in manufacturing, medicine, and robotics

Genome-wide association studies, which look for links between particular genetic variants and incidence of disease, are the basis of much modern biomedical research.

CSAIL's NanoMap system enables drones to avoid obstacles while flying at 20 miles per hour, by more deeply integrating sensing and control.

This week it was announced that MIT professors and CSAIL principal investigators Shafi Goldwasser, Silvio Micali, Ronald Rivest, and former MIT professor Adi Shamir won this year’s BBVA Foundation Frontiers of Knowledge Awards in the Information and Communication Technologies category for their work in cryptography.

Today four MIT faculty were named among the Association for Computer Machinery's 2017 Fellows for making “landmark contributions to computing.”

Last week CSAIL principal investigator Shafi Goldwasser spoke about cryptography and privacy as part of the annual congressional briefing of the American Mathematical Society (AMS) and the Mathematical Sciences Research Institute (MSRI).

This week the Association for Computer Machinery presented CSAIL principal investigator Daniel Jackson with the 2017 ACM SIGSOFT Outstanding Research Award for his pioneering work in software engineering. (This fall he also received the ACM SIGSOFT Impact Paper Award for his research method for finding bugs in code.)An EECS professor and associate director of CSAIL, Jackson was given the Outstanding Research Award for his “foundational contributions to software modeling, the creation of the modeling language Alloy, and the development of a widely used tool supporting model verification.”