The focus of the HCI CoR is inventing new systems and technology that lie at the interface between people and computation, and understanding their design, implementation, and societal impact.
We develop techniques for designing, implementing, and reasoning about multiprocessor algorithms, in particular concurrent data structures for multicore machines and the mathematical foundations of the computation models that govern their behavior.
We focus on understanding the problem-solving strategies used by scientists and engineers, with the goals of automating parts of the process and formalizing educational methods.
We study the problem of 3D object generation. We propose a novel framework, 3D Generative Adversarial Network (3D-GAN), leveraging recent advances in volumetric convolutional networks and generative adversarial nets.
Knitting is the new 3d printing. It has become popular again with the widespread availability of patterns and templates, together with the maker movements. Lower-cost industrial knitting machines are starting to emerge, but we are still missing the corresponding design tools. Our goal is to fill this gap.
Almost every object we use is developed with computer-aided design (CAD). While CAD programs are good for creating designs, using them to actually improve existing designs can be difficult and time-consuming.
We aim to understand 3D object structure from a single image. We propose an end-to-end framework which sequentially estimates 2D keypoint heatmaps and 3D object structure, by training it on both real 2D-annotated images and synthetic 3D data and by integrating a 3D-to-2D projection layer.
When a power company wants to build a new wind farm, it generally hires a consultant to make wind speed measurements at the proposed site for eight to 12 months. Those measurements are correlated with historical data and used to assess the site’s power-generation capacity.This month CSAIL researchers will present a new statistical technique that yields better wind-speed predictions than existing techniques do — even when it uses only three months’ worth of data. That could save power companies time and money, particularly in the evaluation of sites for offshore wind farms, where maintaining measurement stations is particularly costly.