This CoR brings together researchers at CSAIL working across a broad swath of application domains. Within these lie novel and challenging machine learning problems serving science, social science and computer science.
Our main goal is developing a computationally based understanding of human intelligence and establishing an engineering practice based on that understanding.
This CoR aims to develop AI technology that synthesizes symbolic reasoning, probabilistic reasoning for dealing with uncertainty in the world, and statistical methods for extracting and exploiting regularities in the world, into an integrated picture of intelligence that is informed by computational insights and by cognitive science.
We combine methods from computer science, neuroscience and cognitive science to explain and model how perception and cognition are realized in human and machine.
This community is interested in understanding and affecting the interaction between computing systems and society through engineering, computer science and public policy research, education, and public engagement.
MIT App Inventor is an intuitive, visual programming environment that allows everyone – even children – to build fully functional apps for smartphones and tablets.
We develop techniques for designing, implementing, and reasoning about multiprocessor algorithms, in particular concurrent data structures for multicore machines and the mathematical foundations of the computation models that govern their behavior.
We build new protocols and architectures to improve the robustness and performance of computer networks. We develop practical solutions in wireless networks, network security, traffic engineering, congestion control, and routing.
We focus on understanding the problem-solving strategies used by scientists and engineers, with the goals of automating parts of the process and formalizing educational methods.
The Systems CoR is focused on building and investigating large-scale software systems that power modern computers, phones, data centers, and networks, including operating systems, the Internet, wireless networks, databases, and other software infrastructure.
This CoR takes a unified approach to cover the full range of research areas required for success in artificial intelligence, including hardware, foundations, software systems, and applications.
The Weiss Lab seeks to create integrated biological systems capable of autonomously performing useful tasks, and to elucidate the design principles underlying complex phenotypes.
EQ-Radio can infer a person’s emotions using wireless signals. It transmits an RF signal and analyzes its reflections off a person’s body to recognize his emotional state (happy, sad, etc.).
IoT devices primarily use free embedded Linux which has many security flaws. We are conducting penetration tests on IoT and developing a secure version of embedded Linux.
A webpage today is often the sum of many different components. A user’s home page on a social-networking site, for instance, might display the latest posts from the users’ friends; the associated images, links, and comments; notifications of pending messages and comments on the user’s own posts; a list of events; a list of topics currently driving online discussions; a list of games, some of which are flagged to indicate that it’s the user’s turn; and of course the all-important ads, which the site depends on for revenues.
When a power company wants to build a new wind farm, it generally hires a consultant to make wind speed measurements at the proposed site for eight to 12 months. Those measurements are correlated with historical data and used to assess the site’s power-generation capacity.This month CSAIL researchers will present a new statistical technique that yields better wind-speed predictions than existing techniques do — even when it uses only three months’ worth of data. That could save power companies time and money, particularly in the evaluation of sites for offshore wind farms, where maintaining measurement stations is particularly costly.
By crunching 130 million mouse-clicks, two CSAIL researchers have developed a machine-learning model that can predict with surprising accuracy whether or not a MOOC student will drop out of a given course.