This CoR brings together researchers at CSAIL working across a broad swath of application domains. Within these lie novel and challenging machine learning problems serving science, social science and computer science.
This community is interested in understanding and affecting the interaction between computing systems and society through engineering, computer science and public policy research, education, and public engagement.
This CoR takes a unified approach to cover the full range of research areas required for success in artificial intelligence, including hardware, foundations, software systems, and applications.
Automatic speech recognition (ASR) has been a grand challenge machine learning problem for decades. Our ongoing research in this area examines the use of deep learning models for distant and noisy recording conditions, multilingual, and low-resource scenarios.
The creation of low-power circuits capable of speech recognition and speaker verification will enable spoken interaction on a wide variety of devices in the era of Internet of Things.
Uhura is an autonomous system that collaborates with humans in planning and executing complex tasks, especially under over-subscribed and risky situations.
All humans process vast quantities of unannotated speech and manage to learn phonetic inventories, word boundaries, etc., and can use these abilities to acquire new word. Why can't ASR technology have similar capabilities? Our goal in this research project is to build speech technology using unannotated speech corpora.
The goal of this project is to develop and test a wearable ultrasonic echolocation aid for people who are blind and visually impaired. We combine concepts from engineering, acoustic physics, and neuroscience to make echolocation accessible as a research tool and mobility aid.
Neural networks, which learn to perform computational tasks by analyzing huge sets of training data, have been responsible for the most impressive recent advances in artificial intelligence, including speech-recognition and automatic-translation systems.
For people struggling with obesity, logging calorie counts and other nutritional information at every meal is a proven way to lose weight. The technique does require consistency and accuracy, however, and when it fails, it’s usually because people don't have the time to find and record all the information they need.A few years ago, a team of nutritionists from Tufts University who had been experimenting with mobile-phone apps for recording caloric intake approached members of the Spoken Language Systems Group at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL), with the idea of a spoken-language application that would make meal logging even easier.