Spotlighted News

Filter options
  • All
  • Articles
  • Videos
  • Talks
List view



Giving robots a sense of touch

Eight years ago, Ted Adelson’s research group at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) unveiled a new sensor technology, called GelSight, that uses physical contact with an object to provide a remarkably detailed 3-D map of its surface. Now, by mounting GelSight sensors on the grippers of robotic arms, two MIT teams have given robots greater sensitivity and dexterity. The researchers presented their work in two papers at the International Conference on Robotics and Automation last week.

Ingestible origami robot can patch wounds inside your stomach!

In experiments involving a simulation of the human esophagus and stomach, researchers at CSAIL, the University of Sheffield, and the Tokyo Institute of Technology have demonstrated a tiny origami robot that can unfold itself from a swallowed capsule and, steered by external magnetic fields, crawl across the stomach wall to remove a swallowed button battery or patch a wound.The new work, which the researchers are presenting this week at the International Conference on Robotics and Automation, builds on a long sequence of papers on origami robots from the research group of CSAIL Director Daniela Rus, the Andrew and Erna Viterbi Professor in MIT’s Department of Electrical Engineering and Computer Science.

First-ever 3-D printed robots made of both solids and liquids

One reason we don’t yet have robot personal assistants buzzing around doing our chores is because making them is hard. Assembling robots by hand is time-consuming, while automation — robots building other robots — is not yet fine-tuned enough to make robots that can do complex tasks.But if humans and robots can’t do the trick, what about 3-D printers?In a new paper, researchers at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) present the first-ever technique for 3-D printing robots that involves printing solid and liquid materials at the same time.The new method allows the team to automatically 3-D print dynamic robots in a single step, with no assembly required, using a commercially-available 3-D printer.

Origami robot self-folds, crawls, climbs, swims, self-destructs

A team of CSAIL researchers have developed a printable origami robot that folds itself up from a flat sheet of plastic when heated and measures about a centimeter from front to back.Weighing only a third of a gram, the robot can swim, climb an incline, traverse rough terrain, and carry a load twice its weight. Other than the self-folding plastic sheet, the robot’s only component is a permanent magnet affixed to its back. Its motions are controlled by external magnetic fields.“The entire walking motion is embedded into the mechanics of the robot body,” says Cynthia R. Sung, a CSAIL graduate student and one of the robot’s co-developers. “In previous [origami] robots, they had to design electronics and motors to actuate the body itself.”