News

Spotlighted News

Algorithms & Theory , AI & ML , Robotics , Energy , Transportation
Algorithms & Theory , AI & ML , Robotics , Energy , Transportation

One autonomous taxi, please

Filter options
  • All
  • Articles
  • Videos
  • Talks
List view

MIT hosts workshop on theoretical foundations of deep learning

Last week MIT’s Institute for Foundations of Data Science (MIFODS) held an interdisciplinary workshop aimed at tackling the underlying theory behind deep learning. Led by MIT professor Aleksander Madry, the event focused on a number of research discussions at the intersection of math, statistics, and theoretical computer science.

3Q: D. Fox Harrell on his video game for the #MeToo era

The Imagination, Computation, and Expression Laboratory at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) has released a new video game called Grayscale, which is designed to sensitize players to problems of sexism, sexual harassment, and sexual assault in the workplace.

Danielle Olson: Building empathy through computer science and art

Communicating through computers has become an extension of our daily reality. But as speaking via screens has become commonplace, our exchanges are losing inflection, body language, and empathy. Danielle Olson ’14, a first-year PhD student at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL), believes we can make digital information-sharing more natural and interpersonal, by creating immersive media to better understand each other’s feelings and backgrounds.

Learn a language while you wait for WiFi

Hyper-connectivity has changed the way we communicate, wait, and productively use our time. Even in a world of 5G wireless and “instant” messaging, there are countless moments throughout the day when we’re waiting for messages, texts, and Snapchats to refresh. But our frustrations with waiting a few extra seconds for our emails to push through doesn’t mean we have to simply stand by.

Voice control everywhere

The butt of jokes as little as 10 years ago, automatic speech recognition is now on the verge of becoming people’s chief means of interacting with their principal computing devices. In anticipation of the age of voice-controlled electronics, MIT researchers have built a low-power chip specialized for automatic speech recognition. Whereas a cellphone running speech-recognition software might require about 1 watt of power, the new chip requires between 0.2 and 10 milliwatts, depending on the number of words it has to recognize.

Learning spoken language

Every language has its own collection of phonemes, or the basic phonetic units from which spoken words are composed. Depending on how you count, English has somewhere between 35 and 45. Knowing a language’s phonemes can make it much easier for automated systems to learn to interpret speech.In the 2015 volume of Transactions of the Association for Computational Linguistics, CSAIL researchers describe a new machine-learning system that, like several systems before it, can learn to distinguish spoken words. But unlike its predecessors, it can also learn to distinguish lower-level phonetic units, such as syllables and phonemes.

Articles

MIT hosts workshop on theoretical foundations of deep learning

Last week MIT’s Institute for Foundations of Data Science (MIFODS) held an interdisciplinary workshop aimed at tackling the underlying theory behind deep learning. Led by MIT professor Aleksander Madry, the event focused on a number of research discussions at the intersection of math, statistics, and theoretical computer science.

3Q: D. Fox Harrell on his video game for the #MeToo era

The Imagination, Computation, and Expression Laboratory at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) has released a new video game called Grayscale, which is designed to sensitize players to problems of sexism, sexual harassment, and sexual assault in the workplace.

Danielle Olson: Building empathy through computer science and art

Communicating through computers has become an extension of our daily reality. But as speaking via screens has become commonplace, our exchanges are losing inflection, body language, and empathy. Danielle Olson ’14, a first-year PhD student at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL), believes we can make digital information-sharing more natural and interpersonal, by creating immersive media to better understand each other’s feelings and backgrounds.

Voice control everywhere

The butt of jokes as little as 10 years ago, automatic speech recognition is now on the verge of becoming people’s chief means of interacting with their principal computing devices. In anticipation of the age of voice-controlled electronics, MIT researchers have built a low-power chip specialized for automatic speech recognition. Whereas a cellphone running speech-recognition software might require about 1 watt of power, the new chip requires between 0.2 and 10 milliwatts, depending on the number of words it has to recognize.

Learning spoken language

Every language has its own collection of phonemes, or the basic phonetic units from which spoken words are composed. Depending on how you count, English has somewhere between 35 and 45. Knowing a language’s phonemes can make it much easier for automated systems to learn to interpret speech.In the 2015 volume of Transactions of the Association for Computational Linguistics, CSAIL researchers describe a new machine-learning system that, like several systems before it, can learn to distinguish spoken words. But unlike its predecessors, it can also learn to distinguish lower-level phonetic units, such as syllables and phonemes.

Videos

Learn a language while you wait for WiFi

Hyper-connectivity has changed the way we communicate, wait, and productively use our time. Even in a world of 5G wireless and “instant” messaging, there are countless moments throughout the day when we’re waiting for messages, texts, and Snapchats to refresh. But our frustrations with waiting a few extra seconds for our emails to push through doesn’t mean we have to simply stand by.

Talks