# News

Filter options
• All
• Articles
• Videos
• Talks
List view

Reset Filters

## Self-driving cars for country roads

For all the progress made in self-driving technologies, there still aren’t many places where they can actually drive. Companies like Google only test their fleets in major cities where they’ve spent countless hours meticulously labeling the exact 3-D positions of lanes, curbs, off-ramps, and stop signs.

## Reading a neural network’s mind

Neural networks, which learn to perform computational tasks by analyzing huge sets of training data, have been responsible for the most impressive recent advances in artificial intelligence, including speech-recognition and automatic-translation systems.

## Faster big-data analysis

We live in the age of big data, but most of that data is “sparse.” Imagine, for instance, a massive table that mapped all of Amazon’s customers against all of its products, with a “1” for each product a given customer bought and a “0” otherwise. The table would be mostly zeroes.

## An algorithm for your blind spot

Light lets us see the things that surround us, but what if we could also use it to see things hidden around corners? It sounds like science fiction, but that’s the idea behind a new algorithm out of MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) — and its discovery has implications for everything from emergency response to self-driving cars.

## Reading a neural network’s mind

Neural networks, which learn to perform computational tasks by analyzing huge sets of training data, have been responsible for the most impressive recent advances in artificial intelligence, including speech-recognition and automatic-translation systems.

## Faster big-data analysis

We live in the age of big data, but most of that data is “sparse.” Imagine, for instance, a massive table that mapped all of Amazon’s customers against all of its products, with a “1” for each product a given customer bought and a “0” otherwise. The table would be mostly zeroes.

## An algorithm for your blind spot

Light lets us see the things that surround us, but what if we could also use it to see things hidden around corners? It sounds like science fiction, but that’s the idea behind a new algorithm out of MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) — and its discovery has implications for everything from emergency response to self-driving cars.

## Danielle Olson: Building empathy through computer science and art

Communicating through computers has become an extension of our daily reality. But as speaking via screens has become commonplace, our exchanges are losing inflection, body language, and empathy. Danielle Olson ’14, a first-year PhD student at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL), believes we can make digital information-sharing more natural and interpersonal, by creating immersive media to better understand each other’s feelings and backgrounds.

## Cinematography on the fly

In recent years, a host of Hollywood blockbusters — including “The Fast and the Furious 7,” “Jurassic World,” and “The Wolf of Wall Street” — have included aerial tracking shots provided by drone helicopters outfitted with cameras. Those shots required separate operators for the drones and the cameras, and careful planning to avoid collisions. But a team of researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) and ETH Zurich hope to make drone cinematography more accessible, simple, and reliable.

## Voice control everywhere

The butt of jokes as little as 10 years ago, automatic speech recognition is now on the verge of becoming people’s chief means of interacting with their principal computing devices. In anticipation of the age of voice-controlled electronics, MIT researchers have built a low-power chip specialized for automatic speech recognition. Whereas a cellphone running speech-recognition software might require about 1 watt of power, the new chip requires between 0.2 and 10 milliwatts, depending on the number of words it has to recognize.

## Learning words from pictures

Speech recognition systems, such as those that convert speech to text on cellphones, are generally the result of machine learning. A computer pores through thousands or even millions of audio files and their transcriptions, and learns which acoustic features correspond to which typed words.But transcribing recordings is costly, time-consuming work, which has limited speech recognition to a small subset of languages spoken in wealthy nations.

## Learning spoken language

Every language has its own collection of phonemes, or the basic phonetic units from which spoken words are composed. Depending on how you count, English has somewhere between 35 and 45. Knowing a language’s phonemes can make it much easier for automated systems to learn to interpret speech.In the 2015 volume of Transactions of the Association for Computational Linguistics, CSAIL researchers describe a new machine-learning system that, like several systems before it, can learn to distinguish spoken words. But unlike its predecessors, it can also learn to distinguish lower-level phonetic units, such as syllables and phonemes.

## Self-driving cars for country roads

For all the progress made in self-driving technologies, there still aren’t many places where they can actually drive. Companies like Google only test their fleets in major cities where they’ve spent countless hours meticulously labeling the exact 3-D positions of lanes, curbs, off-ramps, and stop signs.

## Learn a language while you wait for WiFi

Hyper-connectivity has changed the way we communicate, wait, and productively use our time. Even in a world of 5G wireless and “instant” messaging, there are countless moments throughout the day when we’re waiting for messages, texts, and Snapchats to refresh. But our frustrations with waiting a few extra seconds for our emails to push through doesn’t mean we have to simply stand by.