News

Spotlighted News

Algorithms & Theory , Big Data , Cybersecurity , Entertainment , Internet of Things , Manufacturing , Wireless
Algorithms & Theory , Big Data , Cybersecurity , Entertainment , Internet of Things , Manufacturing , Wireless

How fast do algorithms improve?

Filter options
  • All
  • Articles
  • Videos
  • Talks
List view

A language for bioinformatics

With the vast growth of next-generation sequencing data, it’s hard to remember that in 1869 Friedrich Miescher isolated DNA for the first time using cells from nearby hospital bandages. Computational genomics has now ushered in a new era of precision medicine, helping find clinically relevant mutations, potential diagnostics for asthma, and precision-based, personalized medicine.

Forum examines promises and limits of AI in clinical medicine

The confluence of medicine and artificial intelligence stands to create truly high-performance, specialized care for patients, with enhanced precision diagnosis and personalized disease management. But to supercharge these systems we need massive amounts of personal health data, coupled with a delicate balance of privacy, transparency, and trust.

Articles

A language for bioinformatics

With the vast growth of next-generation sequencing data, it’s hard to remember that in 1869 Friedrich Miescher isolated DNA for the first time using cells from nearby hospital bandages. Computational genomics has now ushered in a new era of precision medicine, helping find clinically relevant mutations, potential diagnostics for asthma, and precision-based, personalized medicine.

Forum examines promises and limits of AI in clinical medicine

The confluence of medicine and artificial intelligence stands to create truly high-performance, specialized care for patients, with enhanced precision diagnosis and personalized disease management. But to supercharge these systems we need massive amounts of personal health data, coupled with a delicate balance of privacy, transparency, and trust.

Computer system predicts products of chemical reactions

When organic chemists identify a useful chemical compound — a new drug, for instance — it’s up to chemical engineers to determine how to mass-produce it. There could be 100 different sequences of reactions that yield the same end product. But some of them use cheaper reagents and lower temperatures than others, and perhaps most importantly, some are much easier to run continuously, with technicians occasionally topping up reagents in different reaction chambers.

Videos