News

Spotlighted News

Algorithms & Theory , AI & ML , Robotics , Energy , Transportation
Algorithms & Theory , AI & ML , Robotics , Energy , Transportation

One autonomous taxi, please

Filter options
  • All
  • Articles
  • Videos
  • Talks
List view

Using machine learning to improve patient care

Doctors are often deluged by signals from charts, test results, and other metrics to keep track of. It can be difficult to integrate and monitor all of these data for multiple patients while making real-time treatment decisions, especially when data is documented inconsistently across hospitals. In a new pair of papers, researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) explore ways for computers to help doctors make better medical decisions.

Computer system predicts products of chemical reactions

When organic chemists identify a useful chemical compound — a new drug, for instance — it’s up to chemical engineers to determine how to mass-produce it. There could be 100 different sequences of reactions that yield the same end product. But some of them use cheaper reagents and lower temperatures than others, and perhaps most importantly, some are much easier to run continuously, with technicians occasionally topping up reagents in different reaction chambers.

Giving robots a sense of touch

Eight years ago, Ted Adelson’s research group at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) unveiled a new sensor technology, called GelSight, that uses physical contact with an object to provide a remarkably detailed 3-D map of its surface. Now, by mounting GelSight sensors on the grippers of robotic arms, two MIT teams have given robots greater sensitivity and dexterity. The researchers presented their work in two papers at the International Conference on Robotics and Automation last week.

Cinematography on the fly

In recent years, a host of Hollywood blockbusters — including “The Fast and the Furious 7,” “Jurassic World,” and “The Wolf of Wall Street” — have included aerial tracking shots provided by drone helicopters outfitted with cameras. Those shots required separate operators for the drones and the cameras, and careful planning to avoid collisions. But a team of researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) and ETH Zurich hope to make drone cinematography more accessible, simple, and reliable.

Faster page loads

A webpage today is often the sum of many different components. A user’s home page on a social-networking site, for instance, might display the latest posts from the users’ friends; the associated images, links, and comments; notifications of pending messages and comments on the user’s own posts; a list of events; a list of topics currently driving online discussions; a list of games, some of which are flagged to indicate that it’s the user’s turn; and of course the all-important ads, which the site depends on for revenues.

Articles

Using machine learning to improve patient care

Doctors are often deluged by signals from charts, test results, and other metrics to keep track of. It can be difficult to integrate and monitor all of these data for multiple patients while making real-time treatment decisions, especially when data is documented inconsistently across hospitals. In a new pair of papers, researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) explore ways for computers to help doctors make better medical decisions.

Computer system predicts products of chemical reactions

When organic chemists identify a useful chemical compound — a new drug, for instance — it’s up to chemical engineers to determine how to mass-produce it. There could be 100 different sequences of reactions that yield the same end product. But some of them use cheaper reagents and lower temperatures than others, and perhaps most importantly, some are much easier to run continuously, with technicians occasionally topping up reagents in different reaction chambers.

Cinematography on the fly

In recent years, a host of Hollywood blockbusters — including “The Fast and the Furious 7,” “Jurassic World,” and “The Wolf of Wall Street” — have included aerial tracking shots provided by drone helicopters outfitted with cameras. Those shots required separate operators for the drones and the cameras, and careful planning to avoid collisions. But a team of researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) and ETH Zurich hope to make drone cinematography more accessible, simple, and reliable.

Faster page loads

A webpage today is often the sum of many different components. A user’s home page on a social-networking site, for instance, might display the latest posts from the users’ friends; the associated images, links, and comments; notifications of pending messages and comments on the user’s own posts; a list of events; a list of topics currently driving online discussions; a list of games, some of which are flagged to indicate that it’s the user’s turn; and of course the all-important ads, which the site depends on for revenues.

Videos

Giving robots a sense of touch

Eight years ago, Ted Adelson’s research group at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) unveiled a new sensor technology, called GelSight, that uses physical contact with an object to provide a remarkably detailed 3-D map of its surface. Now, by mounting GelSight sensors on the grippers of robotic arms, two MIT teams have given robots greater sensitivity and dexterity. The researchers presented their work in two papers at the International Conference on Robotics and Automation last week.