News

Spotlighted News

Algorithms & Theory , Robotics , Manufacturing
Algorithms & Theory , Robotics , Manufacturing

Giving soft robots senses

Filter options
  • All
  • Articles
  • Videos
  • Talks
List view

Detecting emotions with wireless signals

As many a relationship book can tell you, understanding someone else’s emotions can be a difficult task. Facial expressions aren’t always reliable: a smile can conceal frustration, while a poker face might mask a winning hand.But what if technology could tell us how someone is really feeling?Researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) have developed “EQ-Radio,” a device that can detect a person’s emotions using wireless signals.

Ingestible origami robot can patch wounds inside your stomach!

In experiments involving a simulation of the human esophagus and stomach, researchers at CSAIL, the University of Sheffield, and the Tokyo Institute of Technology have demonstrated a tiny origami robot that can unfold itself from a swallowed capsule and, steered by external magnetic fields, crawl across the stomach wall to remove a swallowed button battery or patch a wound.The new work, which the researchers are presenting this week at the International Conference on Robotics and Automation, builds on a long sequence of papers on origami robots from the research group of CSAIL Director Daniela Rus, the Andrew and Erna Viterbi Professor in MIT’s Department of Electrical Engineering and Computer Science.

First-ever 3-D printed robots made of both solids and liquids

One reason we don’t yet have robot personal assistants buzzing around doing our chores is because making them is hard. Assembling robots by hand is time-consuming, while automation — robots building other robots — is not yet fine-tuned enough to make robots that can do complex tasks.But if humans and robots can’t do the trick, what about 3-D printers?In a new paper, researchers at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) present the first-ever technique for 3-D printing robots that involves printing solid and liquid materials at the same time.The new method allows the team to automatically 3-D print dynamic robots in a single step, with no assembly required, using a commercially-available 3-D printer.

Human-robot teams to the rescue!

Autonomous robots performing a joint task send each other continual updates: “I’ve passed through a door and am turning 90 degrees right.” “After advancing 2 feet I’ve encountered a wall. I’m turning 90 degrees right.” “After advancing 4 feet I’ve encountered a wall.” And so on.Computers, of course, have no trouble filing this information away until they need it. But such a barrage of data would drive a human being crazy.

Articles

Human-robot teams to the rescue!

Autonomous robots performing a joint task send each other continual updates: “I’ve passed through a door and am turning 90 degrees right.” “After advancing 2 feet I’ve encountered a wall. I’m turning 90 degrees right.” “After advancing 4 feet I’ve encountered a wall.” And so on.Computers, of course, have no trouble filing this information away until they need it. But such a barrage of data would drive a human being crazy.

Videos

Detecting emotions with wireless signals

As many a relationship book can tell you, understanding someone else’s emotions can be a difficult task. Facial expressions aren’t always reliable: a smile can conceal frustration, while a poker face might mask a winning hand.But what if technology could tell us how someone is really feeling?Researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) have developed “EQ-Radio,” a device that can detect a person’s emotions using wireless signals.

Ingestible origami robot can patch wounds inside your stomach!

In experiments involving a simulation of the human esophagus and stomach, researchers at CSAIL, the University of Sheffield, and the Tokyo Institute of Technology have demonstrated a tiny origami robot that can unfold itself from a swallowed capsule and, steered by external magnetic fields, crawl across the stomach wall to remove a swallowed button battery or patch a wound.The new work, which the researchers are presenting this week at the International Conference on Robotics and Automation, builds on a long sequence of papers on origami robots from the research group of CSAIL Director Daniela Rus, the Andrew and Erna Viterbi Professor in MIT’s Department of Electrical Engineering and Computer Science.

First-ever 3-D printed robots made of both solids and liquids

One reason we don’t yet have robot personal assistants buzzing around doing our chores is because making them is hard. Assembling robots by hand is time-consuming, while automation — robots building other robots — is not yet fine-tuned enough to make robots that can do complex tasks.But if humans and robots can’t do the trick, what about 3-D printers?In a new paper, researchers at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) present the first-ever technique for 3-D printing robots that involves printing solid and liquid materials at the same time.The new method allows the team to automatically 3-D print dynamic robots in a single step, with no assembly required, using a commercially-available 3-D printer.