News

Spotlighted News

Algorithms & Theory , Big Data , Cybersecurity , Entertainment , Internet of Things , Manufacturing , Wireless
Algorithms & Theory , Big Data , Cybersecurity , Entertainment , Internet of Things , Manufacturing , Wireless

How fast do algorithms improve?

Filter options
  • All
  • Articles
  • Videos
  • Talks
List view

Detecting emotions with wireless signals

As many a relationship book can tell you, understanding someone else’s emotions can be a difficult task. Facial expressions aren’t always reliable: a smile can conceal frustration, while a poker face might mask a winning hand.But what if technology could tell us how someone is really feeling?Researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) have developed “EQ-Radio,” a device that can detect a person’s emotions using wireless signals.

Ingestible origami robot can patch wounds inside your stomach!

In experiments involving a simulation of the human esophagus and stomach, researchers at CSAIL, the University of Sheffield, and the Tokyo Institute of Technology have demonstrated a tiny origami robot that can unfold itself from a swallowed capsule and, steered by external magnetic fields, crawl across the stomach wall to remove a swallowed button battery or patch a wound.The new work, which the researchers are presenting this week at the International Conference on Robotics and Automation, builds on a long sequence of papers on origami robots from the research group of CSAIL Director Daniela Rus, the Andrew and Erna Viterbi Professor in MIT’s Department of Electrical Engineering and Computer Science.

First-ever 3-D printed robots made of both solids and liquids

One reason we don’t yet have robot personal assistants buzzing around doing our chores is because making them is hard. Assembling robots by hand is time-consuming, while automation — robots building other robots — is not yet fine-tuned enough to make robots that can do complex tasks.But if humans and robots can’t do the trick, what about 3-D printers?In a new paper, researchers at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) present the first-ever technique for 3-D printing robots that involves printing solid and liquid materials at the same time.The new method allows the team to automatically 3-D print dynamic robots in a single step, with no assembly required, using a commercially-available 3-D printer.

Voice-controlled calorie counter

For people struggling with obesity, logging calorie counts and other nutritional information at every meal is a proven way to lose weight. The technique does require consistency and accuracy, however, and when it fails, it’s usually because people don't have the time to find and record all the information they need.A few years ago, a team of nutritionists from Tufts University who had been experimenting with mobile-phone apps for recording caloric intake approached members of the Spoken Language Systems Group at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL), with the idea of a spoken-language application that would make meal logging even easier.

What better wind-speed prediction can do for the energy industry

When a power company wants to build a new wind farm, it generally hires a consultant to make wind speed measurements at the proposed site for eight to 12 months. Those measurements are correlated with historical data and used to assess the site’s power-generation capacity.This month CSAIL researchers will present a new statistical technique that yields better wind-speed predictions than existing techniques do — even when it uses only three months’ worth of data. That could save power companies time and money, particularly in the evaluation of sites for offshore wind farms, where maintaining measurement stations is particularly costly.

Articles

Voice-controlled calorie counter

For people struggling with obesity, logging calorie counts and other nutritional information at every meal is a proven way to lose weight. The technique does require consistency and accuracy, however, and when it fails, it’s usually because people don't have the time to find and record all the information they need.A few years ago, a team of nutritionists from Tufts University who had been experimenting with mobile-phone apps for recording caloric intake approached members of the Spoken Language Systems Group at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL), with the idea of a spoken-language application that would make meal logging even easier.

What better wind-speed prediction can do for the energy industry

When a power company wants to build a new wind farm, it generally hires a consultant to make wind speed measurements at the proposed site for eight to 12 months. Those measurements are correlated with historical data and used to assess the site’s power-generation capacity.This month CSAIL researchers will present a new statistical technique that yields better wind-speed predictions than existing techniques do — even when it uses only three months’ worth of data. That could save power companies time and money, particularly in the evaluation of sites for offshore wind farms, where maintaining measurement stations is particularly costly.

Videos

Detecting emotions with wireless signals

As many a relationship book can tell you, understanding someone else’s emotions can be a difficult task. Facial expressions aren’t always reliable: a smile can conceal frustration, while a poker face might mask a winning hand.But what if technology could tell us how someone is really feeling?Researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) have developed “EQ-Radio,” a device that can detect a person’s emotions using wireless signals.

Ingestible origami robot can patch wounds inside your stomach!

In experiments involving a simulation of the human esophagus and stomach, researchers at CSAIL, the University of Sheffield, and the Tokyo Institute of Technology have demonstrated a tiny origami robot that can unfold itself from a swallowed capsule and, steered by external magnetic fields, crawl across the stomach wall to remove a swallowed button battery or patch a wound.The new work, which the researchers are presenting this week at the International Conference on Robotics and Automation, builds on a long sequence of papers on origami robots from the research group of CSAIL Director Daniela Rus, the Andrew and Erna Viterbi Professor in MIT’s Department of Electrical Engineering and Computer Science.

First-ever 3-D printed robots made of both solids and liquids

One reason we don’t yet have robot personal assistants buzzing around doing our chores is because making them is hard. Assembling robots by hand is time-consuming, while automation — robots building other robots — is not yet fine-tuned enough to make robots that can do complex tasks.But if humans and robots can’t do the trick, what about 3-D printers?In a new paper, researchers at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) present the first-ever technique for 3-D printing robots that involves printing solid and liquid materials at the same time.The new method allows the team to automatically 3-D print dynamic robots in a single step, with no assembly required, using a commercially-available 3-D printer.