News

Spotlighted News

Filter options
  • All
  • Articles
  • Videos
  • Talks
List view

An algorithm for your blind spot

Light lets us see the things that surround us, but what if we could also use it to see things hidden around corners? It sounds like science fiction, but that’s the idea behind a new algorithm out of MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) — and its discovery has implications for everything from emergency response to self-driving cars.

Giving robots a sense of touch

Eight years ago, Ted Adelson’s research group at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) unveiled a new sensor technology, called GelSight, that uses physical contact with an object to provide a remarkably detailed 3-D map of its surface. Now, by mounting GelSight sensors on the grippers of robotic arms, two MIT teams have given robots greater sensitivity and dexterity. The researchers presented their work in two papers at the International Conference on Robotics and Automation last week.

Cinematography on the fly

In recent years, a host of Hollywood blockbusters — including “The Fast and the Furious 7,” “Jurassic World,” and “The Wolf of Wall Street” — have included aerial tracking shots provided by drone helicopters outfitted with cameras. Those shots required separate operators for the drones and the cameras, and careful planning to avoid collisions. But a team of researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) and ETH Zurich hope to make drone cinematography more accessible, simple, and reliable.

Adding a splash of human intuition to planning algorithms

Every other year, the International Conference on Automated Planning and Scheduling hosts a competition in which computer systems designed by conference participants try to find the best solution to a planning problem, such as scheduling flights or coordinating tasks for teams of autonomous satellites. On all but the most straightforward problems, however, even the best planning algorithms still aren’t as effective as human beings with a particular aptitude for problem-solving — such as MIT students.

Articles

An algorithm for your blind spot

Light lets us see the things that surround us, but what if we could also use it to see things hidden around corners? It sounds like science fiction, but that’s the idea behind a new algorithm out of MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) — and its discovery has implications for everything from emergency response to self-driving cars.

Cinematography on the fly

In recent years, a host of Hollywood blockbusters — including “The Fast and the Furious 7,” “Jurassic World,” and “The Wolf of Wall Street” — have included aerial tracking shots provided by drone helicopters outfitted with cameras. Those shots required separate operators for the drones and the cameras, and careful planning to avoid collisions. But a team of researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) and ETH Zurich hope to make drone cinematography more accessible, simple, and reliable.

Adding a splash of human intuition to planning algorithms

Every other year, the International Conference on Automated Planning and Scheduling hosts a competition in which computer systems designed by conference participants try to find the best solution to a planning problem, such as scheduling flights or coordinating tasks for teams of autonomous satellites. On all but the most straightforward problems, however, even the best planning algorithms still aren’t as effective as human beings with a particular aptitude for problem-solving — such as MIT students.

Videos

Giving robots a sense of touch

Eight years ago, Ted Adelson’s research group at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) unveiled a new sensor technology, called GelSight, that uses physical contact with an object to provide a remarkably detailed 3-D map of its surface. Now, by mounting GelSight sensors on the grippers of robotic arms, two MIT teams have given robots greater sensitivity and dexterity. The researchers presented their work in two papers at the International Conference on Robotics and Automation last week.