Graphics and Vision

Real-Time Hand-Tracking with a Color Glove
Articulated hand-tracking systems have been widely used in virtual reality but are rarely deployed in consumer applications due to their price and complexity. In this paper, we propose an easy-to-use and inexpensive system that facilitates 3-D articulated user-input using the hands. Our approach uses a single camera to track a hand wearing an ordinary cloth glove that is imprinted with a custom pattern. The pattern is designed to simplify the pose estimation problem, allowing us to employ a nearest-neighbor approach to track hands at interactive rates. We describe several proof-of-concept applications enabled by our system that we hope will provide a foundation for new interactions in modeling, animation control and augmented reality.

Semantic Deformation Transfer
Transferring existing mesh deformation from one character to another is a simple way to accelerate the laborious process of mesh animation. In many cases, it is useful to preserve the semantic characteristics of the motion instead of its literal deformation. For example, when applying the walking motion of a human to a flamingo, the knees should bend in the opposite direction. Semantic deformation transfer accomplishes this task with a shape space that enables interpolation and projection with standard linear algebra. Given several example mesh pairs, semantic deformation transfer infers a correspondence between the shape spaces of the two characters. This enables automatic transfer of new poses and animations.

Deformable Object Animation Using Reduced Optimal Control
Keyframe animation is a common technique to generate animations of deformable characters and other soft bodies. With spline interpolation, however, it can be difficult to achieve secondary motion effects such as plausible dynamics when there are thousands of degrees of freedom to animate. Physical methods can provide more realism with less user effort, but it is challenging to apply them to quickly create specific animations that closely follow prescribed animator goals. We present a fast space-time optimization method to author physically based deformable object simulations that conform to animator-specified keyframes.

A Meshless Hierarchical Representation for Light Transport
We introduce a meshless hierarchical representation for solving light transport problems. Precomputed radiance transfer (PRT) and finite elements require a discrete representation of illumination over the scene. Non-hierarchical approaches such as per-vertex values are simple to implement, but lead to long precomputation. Hierarchical bases like wavelets lead to dramatic acceleration, but in their basic form they work well only on flat or smooth surfaces. We introduce a hierarchical function basis induced by scattered data approximation. It is decoupled from the geometric representation, allowing the hierarchical representation of illumination on complex objects. We present simple data structures and algorithms for constructing and evaluating the basis functions.

Articulated Mesh Animation from Multi-view Silhouettes
Details in mesh animations are difficult to generate but they have great impact on visual quality. In this work, we demonstrate a practical software system for capturing such details from multi-view video recordings. Given a stream of synchronized video images that record a human performance from multiple viewpoints and an articulated template of the performer, our system captures the motion of both the skeleton and the shape. The output mesh animation is enhanced with the details observed in the image silhouettes. For example, a performance in casual loose-fitting clothes will generate mesh animations with flowing garment motions. We accomplish this with a fast pose tracking method followed by nonrigid deformation of the template to fit the silhouettes.