Addy Ngan

Image-Driven Navigation of Analytical BRDF Models
Specifying parameters of analytic BRDF models is a difficult task as these parameters are often not intuitive for artists and their effect on appearance can be non-uniform. Ideally, a given step in the parameter space should produce a predictable and perceptually-uniform change in the rendered image. Systems that employ psychophysics have produced important advances in this direction; however, the requirement of user studies limits scalability of these approaches. In this work, we propose a new and intuitive method for designing material appearance. First, we define a computational metric between BRDFs that is based on rendered images of a scene under natural illumination. We show that our metric produces results that agree with previous perceptual studies.

Statistical Acquisition of Texture Appearance
We propose a simple method to acquire and reconstruct material appearance with sparsely sampled data. Our technique renders elaborate view- and light-dependent effects and faithfully reproduces materials such as fabrics and knitwears. Our approach uses sparse measurements to reconstruct a full six-dimensional Bidirectional Texture Function (BTF). Our reconstruction only require input images from the top view to be registered, which is easy to achieve with a fixed camera setup. Bidirectional properties are acquired from a sparse set of viewing directions through image statistics and therefore precise registrations for these views are unnecessary. Our technique is based on multi-scale histograms of image pyramids.