graphics

John Owens- Hard and Fun Problems on GPUs: Irregularity and Parallelism for Next-Generation Computing
The computational power of GPUs, coupled with increasing programmability, is making the GPU a compelling platform for high-performance computing. GPUs excel at regular, structured computation, but irregular computation -- where processors consume an irregular, runtime-dependent amount of input or produce an irregular, runtime-dependent amount of output -- is a challenging problem in a parallel computing environment. These characteristics are common in today's real-time graphics pipelines but are typically handled in hardware. We anticipate these problems will become more relevant as we move toward the next generation of graphics systems that have at their core *programmable real-time graphics pipelines* and must instead support these workloads in more general-purpose ways.

Deformable Object Animation Using Reduced Optimal Control
Keyframe animation is a common technique to generate animations of deformable characters and other soft bodies. With spline interpolation, however, it can be difficult to achieve secondary motion effects such as plausible dynamics when there are thousands of degrees of freedom to animate. Physical methods can provide more realism with less user effort, but it is challenging to apply them to quickly create specific animations that closely follow prescribed animator goals. We present a fast space-time optimization method to author physically based deformable object simulations that conform to animator-specified keyframes.

A Meshless Hierarchical Representation for Light Transport
We introduce a meshless hierarchical representation for solving light transport problems. Precomputed radiance transfer (PRT) and finite elements require a discrete representation of illumination over the scene. Non-hierarchical approaches such as per-vertex values are simple to implement, but lead to long precomputation. Hierarchical bases like wavelets lead to dramatic acceleration, but in their basic form they work well only on flat or smooth surfaces. We introduce a hierarchical function basis induced by scattered data approximation. It is decoupled from the geometric representation, allowing the hierarchical representation of illumination on complex objects. We present simple data structures and algorithms for constructing and evaluating the basis functions.

Articulated Mesh Animation from Multi-view Silhouettes
Details in mesh animations are difficult to generate but they have great impact on visual quality. In this work, we demonstrate a practical software system for capturing such details from multi-view video recordings. Given a stream of synchronized video images that record a human performance from multiple viewpoints and an articulated template of the performer, our system captures the motion of both the skeleton and the shape. The output mesh animation is enhanced with the details observed in the image silhouettes. For example, a performance in casual loose-fitting clothes will generate mesh animations with flowing garment motions. We accomplish this with a fast pose tracking method followed by nonrigid deformation of the template to fit the silhouettes.

Hair Photobooth: Geometric and Photometric Acquisition of Real Hairstyles
We accurately capture the shape and appearance of a person's hairstyle. We use triangulation and a sweep with planes of light for the geometry. Multiple projectors and cameras address the challenges raised by the reflectance and intricate geometry of hair. We introduce the use of structure tensors to infer the hidden geometry between the hair surface and the scalp. Our triangulation approach affords substantial accuracy improvement and we are able to measure elaborate hair geometry including complex curls and concavities. To reproduce the hair appearance, we capture a six-dimensional reflectance field. We introduce a new reflectance interpolation technique that leverages an analytical reflectance model to alleviate cross-fading artifacts caused by linear methods.

Practical Motion Capture in Everyday Surroundings
Commercial motion-capture systems produce excellent in-studio reconstructions, but offer no comparable solution for acquisition in everyday environments. We present a system for acquiring motions almost anywhere. This wearable system gathers ultrasonic time-of-flight and inertial measurements with a set of inexpensive miniature sensors worn on the garment. After recording, the information is combined using an Extended Kalman Filter to reconstruct joint configurations of a body. Experimental results show that even motions that are traditionally difficult to acquire are recorded with ease within their natural settings.

Pinocchio: Automatic Rigging and Animation of 3D Characters
Animating an articulated 3D character currently requires manual rigging to specify its internal skeletal structure and to define how the input motion deforms its surface. We present a method for animating characters automatically. Given a static character mesh and a generic skeleton, our method adapts the skeleton to the character and attaches it to the surface, allowing skeletal motion data to animate the character. Because a single skeleton can be used with a wide range of characters, our method, in conjunction with a library of motions for a few skeletons, enables a user-friendly animation system for novices and children. Our prototype implementation, called Pinocchio, typically takes under a minute to rig a character on a modern midrange PC.

The Lightspeed Automatic Interactive Lighting Preview System
We present an automated approach for high-quality preview of feature-film rendering during lighting design. Similar to previous work, we use a deep-framebuffer shaded on the GPU to achieve interactive performance. Our first contribution is to generate the deep-framebuffer and corresponding shaders automatically through data-flow analysis and compilation of the original scene. Cache compression reduces automatically-generated deep-framebuffers to reasonable size for complex production scenes and shaders. We also propose a new structure, the indirect framebuffer, that decouples shading samples from final pixels and allows a deep-framebuffer to handle antialiasing, motion blur and transparency efficiently. Progressive refinement enables fast feedback at coarser resolution.

Real-time Edge-Aware Image Processing with the Bilateral Grid
We present a new data structure---the bilateral grid, that enables fast edge-aware image processing. By working in the bilateral grid, algorithms such as bilateral filtering, edge-aware painting, and local histogram equalization become simple manipulations that are both local and independent. We parallelize our algorithms on modern GPUs to achieve real-time frame rates on high-definition video. We demonstrate our method on a variety of applications such as image editing, transfer of photographic look, and contrast enhancement of medical images.

Real-Time Enveloping with Rotational Regression
Enveloping, or the mapping of skeletal controls to the deformations of a surface, is key to driving realistic animated characters. Despite its widespread use, enveloping still relies on slow or inaccurate deformation methods. We propose a method that is both fast, accurate and example-based. Our technique introduces a rotational regression model that captures common skinning deformations such as muscle bulging, twisting, and challenging areas such as the shoulders. Our improved treatment of rotational quantities is made practical by model reduction that ensures real-time solution of leastsquares problems, independent of the mesh size.