Where to grab space debris - algorithm tested on International Space Station analyzes object rotation in space

Where to grab space debris - algorithm tested on International Space Station analyzes object rotation in space
Bookmark and Share

Objects in space tend to spin — and spin in a way that’s totally different from the way they spin on earth.

Understanding how objects are spinning, where their centers of mass are, and how their mass is distributed is crucial to any number of actual or potential space missions, from cleaning up debris in the geosynchronous orbit favored by communications satellites to landing a demolition crew on a comet.

In a forthcoming issue of the Journal of Field Robotics, MIT researchers that include CSAIL's John Leonard will describe a new algorithm for gauging the rotation of objects in zero gravity using only visual information. And at the International Conference on Intelligent Robots and Systems this month, they will report the results of a set of experiments in which they tested the algorithm aboard the International Space Station.

On all but one measure, their algorithm was very accurate, even when it ran in real time on the microprocessor of a single, volleyball-size experimental satellite. On the remaining measure, which indicates the distribution of the object’s mass, the algorithm didn’t fare quite as well when running in real time — although its estimate may still be adequate for many purposes. But it was much more accurate when it had slightly longer to run on a more powerful computer.

Read more at MIT News: http://bit.ly/1pPiLzp